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Audio event recognition methods based on the Hidden Markov Model / Gaussian Mixture Model
(HMM/GMM) often depend on a large number of mixture components or multi-stage models that require
significant computational and memory resources during their operation. A widely used approach for cop-
ing with complexity is employing an acoustic activity detector, which selects for further processing only
those portions of the audio that are considered promising. As a result, the audio feature extraction and
the subsequent pattern recognition stages will process only a subset of the original audio stream, helping
to reduce the misclassification rates while lowering the computational demands. In the present work we
propose a method for bird acoustic activity detection, based on morphological filtering of the spectro-
gram seen as an image. The practical significance of the proposed method is validated on the automated
acoustic recognition of Southern Lapwing Vanellus chilensis, a common Neotropical bird species.
Compared with other methods of acoustic activity detection it demonstrates advantageous performance.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recent technology developments already offer considerable
support to biodiversity monitoring. Automated audio recording
devices, for instance, are widely used for scheduled and continuous
collection of soundscapes. Several international projects, such as
ARBIMON1, AMIBIO2, and INAU 3.143, have gathered audio data in
the range of hundreds of Terabytes. As the number of recordings
increases by the minute, handling such a huge amount of data
imposes great challenges in terms of storage capacity and data man-
agement tools.
Nowadays, the content extraction tools are most often based on
statistical machine learning methods, such as the HMM/GMM like-
lihood estimators. However these likelihood estimators often
depend on a large number of mixture components or on
multi-stage models that require significant computational and
memory resources. A widely used approach for coping with com-
plexity is employing an acoustic activity detector, which selects
for further processing only those portions of the audio that are con-
sidered promising. As a result, the audio feature extraction and
pattern recognition stages that follow only process a subset of
the original audio stream, helping to reduce the misclassification
rates and computational demands. In Section 2 we briefly discuss
the common technological framework of acoustic species recogni-
tion and the role of the acoustic activity detector.

Various energy-based methods for acoustic activity detection
have been studied in search of a simple solution for eliminating
silent portions of the signal. Their operation is quite simple – basi-
cally the short-term energy of the signal is computed with a sliding
short-time window function and afterward it is compared to a
threshold. Typically, the threshold is adjusted to select for further
processing only the audio frames with high energy. These methods
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do not depend on prior knowledge about the signal and are quite
easy to implement, which is the main reason for their widespread
use in environmental sound recognition [1] and other application
domains, such as bioacoustics as well as signal, speech, and audio
processing. More sophisticated methods for acoustic activity
detection are based on modeling the distribution of short-term
energy with a Gaussian Mixture Model (GMM) [2–4]. These meth-
ods rely on a bi-Gaussian Mixture Model, where the first Gaussian
component is fitted to the distribution of the low-energy frames
and the second is fitted to the distribution of the high-energy
frames. In most cases the decision threshold is selected as a
trade-off at the crossing point of the two Gaussian functions. The
bi-Gaussian method requires training datasets for adjusting the
parameters of the GMM, but offers a constructive way of selecting
the threshold, and makes it convenient for practical use. An over-
view and comparative evaluation of various energy-based acoustic
activity detection methods is available in Sahidullah and Saha [5].
A common drawback of all energy-based methods is their limited
capacity to distinguish between informative sound events and
background acoustic activity, which is mainly due to the limited
descriptive power of the energy feature. For instance, the acoustic
activity detector may miss target sound events with low amplitude
and select a certain number of audio segments containing bursts of
background noise. This weakness can be compensated by combin-
ing the energy feature with other audio descriptors, at the cost of
higher computational demands and loss of simplicity.

A HMM-based recognizer for automated detection of American
Robin Turdus migratorius and Common Kingfisher Alcedo atthis is
presented in Potamitis et al. [6]. A system for semiautomatic recog-
nition of the nocturnal activity of Eurasian Bittern Botaurus stellaris
was studied by Frommolt and Tauchert [7]. Its functionality
included detecting the direction of the sound source, estimating
the number of calling animals, identification of the bird species,
and determination of the timestamps. A comparison of various
machine learning approaches for the classification of bird and
amphibian calls was provided by Acevedo et al. [8]; whereas a
comprehensive review of methods is presented in Stowell and
Plumbley [9].

In the past few years the research community shifted attention
to recordings collected in the wild [10,11,15,34] and to large-scale
bird classification tasks [12,13]. Research on acoustic recognition
of bird species was fostered by technology evaluation challenges
[14–16].

Recently, image processing techniques operating on the spec-
trogram were employed on the task of automated acoustic species
recognition [17–19]. Bardeli [17] used Structure Tensors in order to
identify regions of the spectrum, which are suitable for feature
extraction. Briggs et al. [18] and Potamitis [19] focused on
multi-label classification for identifying multiple species
co-occurring in the same audio recording. These approaches treat
spectrograms as an image and find regions of interest that are suit-
able for extracting statistical features.

Other methods for selecting only the crucial portions of audio
recordings are based on the structure of bird vocalizations. To that
end the elements of bird vocalizations are assigned to four hierar-
chical levels: notes, syllables, phrases, and song. Härmä [20] pro-
posed an algorithm that extracts syllables from continuous bird
songs. This approach was further studied by Lee et al. [21] and
Chou et al. [22]. Lee et al. [23] used the same idea, but the birdsong
syllables were manually labeled.

Based on these recent studies we propose a new method for
acoustic activity detection that uses morphological filtering of
the spectrogram treated as an image. The morphological filtering
aims to remove high-amplitude events of compact time–frequency
distribution, which are not likely to be part of the target signal. In
this way we obtain a cleaned spectrogram, where the promising
regions are highlighted. Next we compute the histogram, using
the sums of spectral magnitude values of each frame. Finally we
determine the decision threshold for selecting promising portions
of the audio. The proposed method is presented in Section 3.

For the comparative assessment of several acoustic activity
detection methods we used a common experimental setup
(Section 4). The experimental results demonstrate that the perfor-
mance of the present approach is advantageous when compared
with two other energy-based acoustic activity detection methods
(Section 5). Further discussion on the limitations of morphological
filtering is provided in Section 6. Finally, Section 7 concludes this
work.

2. Technological framework

The technological framework of the Gaussian Mixture Model
(GMM) and Hidden Markov Model (HMM) methods for automated
acoustic bird recognition implements the following steps (Fig. 1):

(1) We use an expert-annotated training dataset to build a
species-specific model for the target species (Vanellus chilensis).
(2) Likewise, we use a representative but target-species-free sam-
ple of environment sounds to build a general acoustic background
model. These models are most often implemented as GMM or
HMM and aim to accurately represent the acoustic variability of
the target species and the time-varying acoustic conditions of the
environment. For that reason it is quite common that the
GMM/HMM models are built from large amounts of audio record-
ings and either have large numbers of mixture components (GMM)
or rely on a multi-state modeling (HMM). On the acoustic bird spe-
cies classification task, for instance, Graciarena et al. [24] used
1024-component species-specific GMM and a 1024-component
acoustic background model.

The use of large numbers of mixture components and
multi-stage models increases the computational demands, mem-
ory requirements, and energy consumption during operation.
Therefore, developers often trade off complexity against accuracy,
by reducing the number of states, mixture components, and audio
feature parameters. Another way to cope with complexity is to
optimize the audio feature extraction stage, which typically claims
a significant portion of the computational and memory resources.

Acoustic activity detectors based on the short-term energy are
known to be a simple and economical method for implementing
the strategy shown in Fig. 1. An overview of various energy-
based acoustic activity detection methods is provided in
Sahidullah and Saha [5]. Section 3 presents details on the proposed
method for acoustic activity detection and Section 5 offers a com-
parative analysis of a traditional GMM-based energy detector [5],
the syllable-based approach of Härmä [20], and our approach.

3. Proposed method

In the present work we seek to reduce the computational
demands of bird recognition by pre-scanning the audio stream
with an acoustic activity detector (Fig. 2). Promising audio seg-
ments are labeled for further processing and parameterization is
carried out only for promising high-energy portions of the signal.
In the pattern recognition stage the recognizer decides whether a
specific audio segment corresponds to a target vocalization or
not. If the computation time of the present detector is less than
that of a GMM/HMM recognizer operating on continuous audio
recordings, we would have accomplished our aim to significantly
reduce the overall computational demands of the system.
Furthermore, we assume that by excluding portions of audio with
predominant environmental noise and by selecting only the most
representative audio segments, we can increase the accuracy of
our species-specific recognizer. Consequently we focus our



Fig. 1. Overall block diagram of statistical methods for automated acoustic recognition of bird species.

Fig. 2. Audio-processing steps of the proposed method for acoustic activity detection.

Fig. 3. Spectrogram of a 13-s recording, obtained after the audio pre-processing
phase. The segment contains Vanellus chilensis calls and faint calls of other species.
Two of the competing signals to be removed are marked with a rectangular box (cf.
Fig. 4).
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attention on the audio segments with high signal-to-noise ratio
(SNR) and process only the high-energy portions of the signal.
These signals have amplitude above �30 dB and correspond to
sounds emitted by birds within a range of few meters to several
dozen meters from the microphone. These sound levels correspond
to signal strengths that ornithologists can identify with certainty
when using traditional audiovisual survey methods [25,26] and
thus facilitate the interpretation of the observed acoustic activity
patterns.

The individual audio processing steps are discussed in the fol-
lowing subsections.

3.1. Audio pre-processing

Two main actions are performed during the audio pre-
processing: resampling and high-pass filtering. The audio is down-
sampled to 24 kHz, which preserves the frequency range where
most of the energy of bird vocalizations is located while saving
computational and memory resources. In addition, a high-pass
filter, with a cut-off frequency 1 kHz, is applied to reduce the
low-frequency noise caused by wind and vibrations of mechanical
origin.

3.2. Spectral analysis

Long recordings are divided into non-overlapping pieces of one
minute and the spectrogram is generated for each portion of audio.
The spectrogram is computed with a Hamming window of 480
samples, sliding with an overlap of 360 samples and a length of
the discrete Fourier transform (DFT) of 512 samples (Fig. 3). For
an audio signal sampled at 24 kHz, the window size of 480 samples
corresponds to 20 ms and the overlap of 360 samples lets the win-
dow shift in 5-ms steps. The window shift determines the time res-
olution of the frame selection method, i.e. affects the number of
pixels in a row of the spectrogram. By contrast, the choice of fre-
quency resolution, that is the ratio between sampling rate in Hz
and the DFT size, bounds the resolution of the individual pixels.
Likewise, the number of pixels in one column of the spectrogram
depends on the DFT size. Therefore the spectrogram resolution
and the image size in terms of number of pixels depend on the
recording duration and on the spectral analysis settings.

The window size (20 ms) and shift (5 ms) settings were found to
provide a good trade-off between frequency and temporal
resolution in the audio spectrogram. Other researchers used the
same window size and shift step in related work on acoustic bird
recognition [27,28]. Somervuo et al. [29] reduced the computa-
tional demand with a window size of 20 ms and shift step of 10 ms.

In the following we denote the spectrogram by S(k, l), where k is
the index of the kth frequency component and l is the frame num-
ber index.

3.3. Morphological opening of the spectrogram

Like Cadore et al. [30] and Potamitis [19] we apply the morpho-
logical opening operator on the spectrogram S(k, l), which is con-
sidered as an image. The morphological opening [31] is defined
as the operation erosion followed by the operation dilation using
the same structuring element. Erosion reduces the bright regions
by removing bright pixels from the object boundaries and thus
enlarges the dark regions. By contrast, dilation enlarges bright
regions by adding bright pixels to the object boundaries and thus
reduces the dark regions. Therefore, erosion removes noise
whereas dilation produces an amplification of shapes and fills gaps.



Fig. 4. Spectrogram after applying the operator morphological opening on the
spectrogram in Fig. 3. Nearly all non-target sound events with compact time–
frequency occurrence were removed.

Fig. 5. The sum of magnitude values per frame Wl for the spectrogram in Fig. 4.

Fig. 6. Histogram of the sum of magnitudes for the spectrogram shown in Fig. 4.
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Consequently remaining objects in the image are smoothed ver-
sions of the original objects [30].

The result of applying the aforementioned erosion and dilation
operators is the processed spectrogram Sed(k, l) (Fig. 4). Following
Evans et al. [32] we use a rectangular shape for the structuring ele-
ment, which we defined as a mask of 40-by-30 pixels. Therefore
the morphological filtering eliminates acoustic events with high
amplitude and compact localization in time and frequency.
However events with a longer duration remain intact, such as V.
chilensis vocalizations. This leads to lower numbers of audio events
to be processed in the GMM/HMM-based pattern recognition stage
and reduces the probability of false alarms due to short energy
bursts.

3.4. Threshold estimation

The frame selection step begins with the estimation of the deci-
sion threshold. For that purpose, we first calculate the sum of mag-
nitudes Wl of all frequency components in the morphologically
opened spectrogram Sed(k, l). For each frame we compute

Wl ¼
XK

k¼1

Sedðk; lÞ; l ¼ 1;2; . . . ; T; ð1Þ

and subsequently generate the histogram of the Wl values. Here
K = 256 is half of the DFT size, and T is the total number of frames
in the specific recording. The Wl values computed for the signal in
Fig. 4 are shown in Fig. 5 and the corresponding histogram in Fig. 6.

The threshold h is estimated based on the histogram of Wl

(Fig. 7). Firstly we set the selection criterion C, which specifies
how strict the frame selection process will be. A lower value of C
means a more restrictive criterion is applied, and in the extreme
case when C = 0 no frames are selected. By contrast, C = 1 means
that all frames are selected. In the following, we set C = 0.3 as this
value provides selection of nearly all frames with amplitude over
�30 dB. Secondly, the bin B with the highest number of counts
Xmax in the histogram is identified. Next, the right-hand bin b > B
with count number x, is compared against Xmax. If the ratio x/Xmax

is not smaller than C the next bin on the right-hand is evaluated.
The process is terminated when the condition x/Xmax < C is fulfilled.
Finally, the threshold value h is set equal to the center of the bin b
for which the condition x/Xmax < C was fulfilled.

The highest number of frames in the histogram is in the first bin
and thus all other bins have to be inspected as well (Fig. 6). With
C = 0.3 the second bin is selected because its value (85) is less than
30% of the highest bin value (1500). Therefore, the threshold h is
set to 30, which is the center of the second bin.

3.5. Frame selection

In the final step we select for further processing the frames
S2(k, l) based on the threshold h

S2ðk; lÞ ¼
Sðk; lÞ; if Wl � h

0; otherwise

�
: ð2Þ

According to (1) and (5), the segmentation is carried out based
on the value h, i.e. on the morphologically filtered spectrogram
Sed(k, l) and the threshold computed from the Wl values
(Section 3.4). However as defined in (5), the frames for further pro-
cessing are taken directly from the pre-processed spectrogram
S(k, l) to avoid the loss of resolution and the nonlinear distortions
caused by the morphological filtering. The outcome of the frame
selection process applied to the spectrogram in Fig. 3 is shown in
Fig. 8.

The computational demand of the proposed algorithm is pro-
portional to the number of pixels in the spectrogram, due to the
morphological opening operator which is applied to each pixel.
The other calculations are much less demanding – the histogram
generation depends mostly on the window shift step (here 5 ms),
whereas the threshold estimation loop (Fig. 7) depends on the
number of bins in the spectrogram (typically 10) and the data dis-
tribution, but not on the number of pixels in the image.
4. Experimental setup

In the following subsections we present the datasets employed
in the experimental validation of the proposed method (subsection
4.1) and shortly outline two widely used methods for acoustic



Fig. 7. The threshold estimation algorithm.

Fig. 8. Selected frames for the spectrogram shown in Fig. 3.
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activity detection, namely Sahidulla and Saha [5] and Härmä [20].
Next, we describe the common experimental protocol and perfor-
mance metrics (subsection 4.4) used in the comparison between
the proposed method (Section 3) and the aforementioned
approaches [5,20]. The practical significance of these three meth-
ods is assessed in terms of recognition performance and speed with
the help of a species-specific HMM-based recognizer of V. chilensis
vocalizations.
4.1. The V. chilensis lampronotus datasets4

4.1.1. Study area
The study was carried out in the northern Pantanal region,

municipality of Poconé, Mato Grosso, Brazil. Between July 2012
and October 2014 we used Song Meter SM2+ recorders (Wildlife
Acoustics5) for soundscape collection in 24/7 mode, in total ca.
90 TB of audio recordings with a file duration of 14–30 min,
48-kHz sampling rate, and 16-bit resolution [34]. We completed
4 According to the principles of reproducible research, we will provide all datasets
described here through the website of the Computational Bioacoustics Research Unit
(CO.BRA; http://cobra.ic.ufmt.br/) of the Federal University of Mato Grosso (UFMT).

5 Wildlife Acoustics: www.wildlifeacoustics.com.
one annual cycle of recordings each at Fazenda Pouso Alegre
(�16.50303 S, �56.74533 W; 115–126 m a.s.l.; c. 110 km2) and
SESC Pantanal Private Natural Heritage Reserve (�16.49879 S,
�56.41309 W; 119–131 m a.s.l.; 878.7 km2). These activities were
carried out by the Computational Bioacoustics Research Unit6 within
the scope of the INAU 3.14 Project ‘‘Monitoring Bioindicators and
Migratory Birds in the Pantanal’’ of the National Institute for
Science and Technology in Wetlands7, aiming at the promotion of
Applied Acoustomics as a tool for bio-sustainability assessment [33].

The Southern Lapwing V. chilensis is a common and widespread
Neotropical waterbird. The ground-dwelling species inhabits open
areas and muddy lake shores. The resident subspecies in our cen-
tral Brazilian study area is V. c. lampronotus (Wagler, 1827).

All datasets used here for technology development and evalua-
tion were extracted from the aforementioned Pantanal soundscape
collection; cf. Ganchev et al. [34] for further details on the dataset.

4.1.2. Acoustic background dataset
For the creation of a balanced acoustic model of the environ-

mental noise we selected approximately 27 h of representative
Pantanal audio recordings: (i) fifty-four 14-min Fazenda Pouso
Alegre soundscape recordings with a total duration of over 12 h
and (ii) thirty-two 30-min SESC Pantanal soundscape recordings
with a total duration of 15 h. These recordings are regarded as V.
chilensis free, although on occasions some vocalizing lapwings
may have flown over the SESC recording station.

4.1.3. V. chilensis training dataset
The training dataset consisted of 93 recordings, in total contain-

ing �45 min of sounds from the target species. Among these were
38 recordings that are virtually clean of competing interference
(�18 min) and 52 recordings (�24 min) that also contain
non-target sounds overlapping with the target signals. Selective fil-
tering was carried out manually to discard the strongest non-target
calls from the training dataset. Finally, three recordings of the V.
chilensis training dataset, representing choruses of lapwing flocks
(�2 min), were not used in this work.

4.1.4. V. chilensis validation dataset
The validation dataset consisted of fourteen soundscape record-

ings with duration of 14 min, which were not processed or edited
6 CO.BRA: http://cobra.ic.ufmt.br/.
7 INAU: www.inau.org.br.
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manually, and thus contain competing sounds from multiple spe-
cies and certain interferences of abiotic origin. Each recording
was time-stamped and tagged on the level of V. chilensis call series
by a bird-sound expert [34]. In brief, the annotation procedure can
be summarized as follows:

(a) Only for the purpose of tagging, we made use of a graphic
equalizer to reduce competing noises such as wind and
insects by �48 dB in the frequency ranges [0, 630] Hz and
[12.5, 24] kHz. However, the acoustic activity detector works
directly on the original audio.

(b) The filtered recordings were screened using a headset with
integrated manual volume control but without additional
software amplification, and simultaneously through visual
inspection of the spectrograms in Adobe Audition.

(c) The bird-sound expert tagged the start and end times of each
acoustic event; however, the number of calls per vocaliza-
tion event was not counted.

(d) The following rules were applied to separate call events: (i) a
pause of at least one second between target signals was used
to separate call events (isolated single calls or call series) of
similar sound pressure levels; (ii) abrupt changes in sound
pressure levels were used to separate different call series
even if there was no pause between the signals; (iii) how-
ever, call sequences that varied greatly in sound pressure
levels over time were not divided into different call series
when the calling birds seemed continuously move (fly)
around the recording stations.

(e) In addition, we noted the compound dB-values of the loud-
est call of each vocalization event; that is, the volume of
the target signal plus the volume of the remaining back-
ground noise.

(f) The manual annotation of the timestamps was repeated
twice. Depending of the complexity of the soundscape, the
time effort per 14-min sound file was between about 4
and 16 h.

(g) Some audio signals could not be identified with certainty as
target or non-target, either because they were too faint or
because background noise levels were too high. Such call
series were time-stamped and excluded from further
analysis.

The validation dataset was divided into two non-overlapping
parts:

(1) A subset of four recordings, containing 80 confirmed V.
chilensis call series. This subset is referred to as dataset
VL01 and was used for the purpose of technology optimiza-
tion and tuning the adjustable parameters of the V. chilensis
acoustic activity detector.

(2) A subset of ten recordings, containing 337 confirmed V.
chilensis call series. This subset is referred to as dataset
VL02 and was used in the evaluation of the performance of
the acoustic activity detectors and the species-specific V.
chilensis recognizer.

In fact, evaluation dataset VL02 contains a total of 474 V. chilen-
sis tags, split in two groups. The first group of 337 tags was con-
firmed by a bird-sound expert as originating from the target
species V. chilensis. The second group of 137 tags, heard and/or seen
in the spectrogram, allegedly originated from the target species
too, but the sounds could not be identified with certainty, usually
due to a high noise floor or the great distance of the calling bird
from the microphone. To the latter tags we refer to as not sure.
Hence, the 137 events of the second group (not sure) were excluded
from further analysis.
4.2. Syllable-based acoustic activity detection

The method proposed by Härmä [20] segments the acoustic sig-
nal as a set of N syllables. The syllables are found from the value of
the signal amplitude in the spectrogram. The result is a set of brief
frequency and amplitude modulated sinusoidal pulses.

In brief, Härmä [20] proposed the following algorithm:

1. Compute the spectrogram of the sound using short-time Fourier
transform (STFT). The spectrogram is a matrix S(f, t) where f
represents frequency index and t is the frame index.

2. Repeat steps 3–7 for n = 0, 1, . . . , N � 1.
3. Find fn and tn such that |S(fn, tn)| is the maximum value in the

spectrogram. This position represents the maximum amplitude
position of nth sinusoidal syllable.

4. Store frequency parameter xn(0) = fn and amplitude
an(0) = 20 logn10|S(fn, tn)| [dB].

5. Starting from |S(fn, tn)|, trace the maximum peak of S(f, t) for
t > t0 and for t < t0 until an(t � t0) < an(0) � T dB, were the
stopping criteria T is typically 30 dB. It will determine how
the sinusoidal syllable starts and ends at times ts and te, respec-
tively around the amplitude maximum t0.

6. Store obtained frequency and amplitude trajectories corre-
sponding to the nth syllable in functions xn(s) and an(s), where
s = t0 � ts, . . ., t0 + te.

7. Set S(f, [ts, ts+1, . . ., te]) = 0 to delete the area of nth syllable.

The value of T is very important because it determines the
search stop criterion for new syllables and also the size of each
syllable.

4.3. Energy-based acoustic activity detection with GMM

A widely used energy-based acoustic activity detector imple-
mented with Gaussian Mixture Models (GMM) is described in
Sahidullah and Saha [5]. The most frequent implementation uses
a two-component GMM in which the first component is fitted to
the distribution of the low-energy frames and the second one is fit-
ted to the distribution of the high-energy frames. Subsequently the
most promising frames are selected using a threshold learned from
the distribution of the data. The threshold is usually selected at the
crossing point of the two Gaussian functions.

In the present work we set the threshold depending on the
means of the two Gaussian components. The threshold htrn for
the training dataset was calculated by (3) and htst for the test data-
set by (4):

htrn ¼
l1 þ l2

2
þ jl1 � l2j � 0:2; ð3Þ

htst ¼maxðl1;l2Þ: ð4Þ

During the operation of the recognizer, htst is selected with a
higher value than htrn because we wish to make a decision based
on frames with signal amplitude over �30 dB.

4.4. Experimental protocol and performance metrics

In all experiments, we followed a common experimental proto-
col that makes use of the datasets described in Section 4.1. We
used the training dataset for adjusting the thresholds 5, 6 and 4
of the acoustic activity detectors. The three acoustic activity detec-
tors are evaluated by means of recognition accuracy after the
HMM-based species-specific recognizer.

The training dataset was reused for training a single-state HMM
model with 48 mixture components for the species-specific V.
chilensis recognizer. The acoustic background model, created as a



Table 1
Subsets of the evaluation dataset VL02.

Amplitude range # target tags # not sure tags Total # of tags

[0, �20 dB] 44 0 44
[0, �30 dB] 111 0 111
[0, �40 dB] 240 2 242
[0, �50 dB] 337 137 474

Table 2
Percentage of selected audio frames after applying the three acoustic activity
detectors on the validation dataset VL02.

Method Ground truth timestamps and tags

Subset VL02 [0, �30 dB]
(%)

Subset VL02 [0, �20 dB]
(%)

Proposed method 89.8 99.2
GMM-based method [5] 91.6 97.8
Syllable-based method

[20]
98.8 98.9
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single-state HMM model with the same number of mixture com-
ponents, was built from the acoustic background dataset. All
HMMs were trained by 100 iterations of the Baum-Welch
algorithm.

The adjustable parameters of the V. chilensis recognizers were
tuned by using the four audio recordings, described as dataset
VL01. Following this we evaluated the recognizer performance
with the test dataset VL02. The results were evaluated in terms
of two performance metrics – correct and accuracy, measured in
percentages:

Correct ¼ H
N

100; ½%�; ð5Þ

Accuracy ¼ H � I
N

100; ½%�; ð6Þ

where H is the number of hits, I denotes the number of insertions,
and N is the total number of target events according to the annota-
tions of the test dataset VL02. Here, a hit indicates that the V. chilen-
sis recognizer correctly detected a target sound event (either single
call or call series). Insertions are false positives, i.e. the V. chilensis
recognizer labeled a sound event as V. chilensis call or call series
although this sound event has a different origin.

For the purpose of technology evaluation we made use of two
subsets of labeled data. The first consists of vocalizations with
maximum amplitude in the range [0, �20 dB] (Table 1). In this
case, there are N = 44 target events which are considered for count-
ing the number of hits (H) and misses (N�H) of the V. chilensis rec-
ognizer. The second subset consists of vocalizations with
maximum amplitude in the range [0, �30 dB]. There are N = 111
target events in the second subset, with respect to which the num-
ber of hits (H) and misses (N–H) are counted. In both subsets the
remainder of the 337 target tags, together with the 137 of the
group not sure, were not counted as insertions I. Therefore, for
insertions we count only detections which do not coincide with
the extended set of 474 V. chilensis tags.

5. Results

We present experimental results for the proposed method of
acoustic activity detection and for two other energy-based detec-
tion methods (i) the traditional GMM-based energy detector [5]
and (ii) the syllables-based detector [20]. In order to make a fair
comparison among these methods, their settings were adjusted
to obtain a similar percentage of selected audio frames on the
training dataset. For the GMM-based energy detection, this adjust-
ment was made by setting the threshold equal to the higher mean
of the mixtures components. In the case of the syllables-based
algorithm we made use of stopping criterion 30 dB as in Härmä
[20]. For the method proposed in Section 3, we set the frame selec-
tion criterion C = 0.3.

All acoustic activity detection methods selected between 90%
and 99% of the audio frames containing target vocalizations with
signal strengths higher than �30 dB (Table 2). In the following
we investigate how these acoustic activity detection methods facil-
itate the subsequent species recognition step. Therefore, the per-
formance of the species-specific recognizer of V. chilensis call
series was evaluated in terms of the percentage metrics correct
and accuracy on the subsets VL02 [0, �30 dB] and VL02 [0,
�20 dB] (Table 3).

For subset VL02 [0, �20 dB] we observe reasonable percentage
correct values with the proposed acoustic activity detection
method and the GMM-based recognizer (Table 3). For subset
VL02 [0, �30 dB] the proposed method returned higher percentage
correct values when compared with the results of the two other
recognizers. Furthermore, the proposed method outperformed
the other two methods on subset VL02 [0, �30 dB] with respect
to both measures: correct and accuracy. This advantage is due to
the morphological filtering of the spectrogram that eliminates
high-energy sound events, compactly localized in time and fre-
quency, which otherwise possess sufficient energy to be selected
by the acoustic activity detection methods.

Finally, we analyzed the average computation time needed for
each of the three methods to process a single 14-min audio record-
ing (Table 4). All tests were carried out on a personal computer
with operational memory 8 GBs, using a single core of the Intel
Xeon E3-1220 processor operating at 3.1 GHz. The times under fea-
ture extraction refer to the overall time needed for frame selection
(acoustic activity detector) and for computing the audio features
(species-specific recognizer).

The average time spent for processing a 14-min audio recording
in the V. chilensis recognizer is between 13 and 29 s, depending on
the acoustic activity detection method. In particular, the
HMM-based recognizer needs 1.100 s and 2.590 s on average to
carry out the recognition with the proposed method and with
the GMM-based acoustic activity detector, respectively. This differ-
ence is due to the number of frames selected by each method,
specifically, in comparison with the GMM-based approach the pro-
posed method selects more carefully the candidate frames, which
results in a smaller number of frames, faster computational times
for the HMM recognizer, and lower misclassification rates. By con-
trast, the shorter time for frame selection in the GMM-based
acoustic activity detection method is voided by the longer process-
ing time in the HMM recognizer. Thus, with the proposed method
the total processing time of the V. chilensis recognizer is 52%
shorter when compared to the syllable-based method and only
by 8% longer when compared to the GMM-based approach.

In conclusion, when compared to the syllable-based acoustic
activity detector the proposed method demonstrates better perfor-
mance on the subset VL02 [0, �30 dB] in terms of the percentage
metrics correct and accuracy as well as speed. The same holds true
when the proposed approach is compared with the GMM-based
method, except for the minor increase of computational demands.

6. Discussion

The idea of processing the audio spectrogram as an image was
exploited in earlier studies [17–19]. The main difference with
respect to related work is that here we made use of morphological
filtering for the purpose of robust acoustic activity detection.



Table 3
Performance of the V. chilensis recognizer for three acoustic activity detection
methods.

Method Subset VL02
[0, �30 dB]

Subset VL02
[0, �20 dB]

Correct
(%)

Accuracy
(%)

Correct
(%)

Accuracy
(%)

Proposed method 88.3 56.4 93.9 41.3
GMM-based method [5] 74.3 55.2 90.1 48.0
Syllable-based method

[20]
49.0 44.1 73.0 62.8

Table 4
Overall computation time for processing a single 14-min audio recording by the V.
chilensis recognizer for three acoustic activity detection methods.

Method Feature
extraction
[ss.ms]

HMM
recognizer
[ss.ms]

Total time spent
[ss.ms]

Proposed method 12.550 01.100 13.650
GMM-based

method [5]
10.050 02.590 12.640

Syllable-based
method [20]

21.670 06.800 28.470
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Potential misclassification is avoided by removing sound events
that are localized in a narrow time–frequency range, but otherwise
still have considerable energy levels. The experimental results con-
firm the advantage of the proposed method.

In our case study the proposed method for acoustic activity
detection of V. chilensis leads to relatively higher precision when
compared with the traditional GMM-based [5] and syllable-based
[20] methods. This is particularly true when the V. chilensis recog-
nizer operates on the noisy signals [0, �30 dB] (Table 3). However,
there is potential for further improvements of the proposed
method, especially with respect to the detection of weaker audio
signals.

One limitation of our approach is that the selection of a certain
audio frame always means that the entire frequency bandwidth is
selected for further processing, e.g. for computation of Mel
Frequency Cepstral Coefficients (MFCC) and subsequent processing
steps. In other words, if no special action for noise suppression is
foreseen, there is a high risk that signals of more than one species
are represented in the feature vector. During training this will
interfere with the quality of the target model. In the cases when
there is no overlap between target and non-target signals in the
frequency domain this drawback can be circumvented by retriev-
ing only regions of interest, as suggested in Briggs et al. [18].
Thus audio frames can easily adapt to the variable bandwidths
and lengths of specific call notes, and thereby reflect the true nat-
ure of animal vocalizations much better than frames covering the
entire frequency range. However, the selection of variable band-
width regions might not allow straightforward use of MFCC
parameters and would require new image-based audio descriptors,
such as those used in Potamitis [19].
7. Conclusion

The morphology-based acoustic activity detection method
described here was found to outperform the traditional
GMM-based [5] and syllable-based [20] methods. The practical sig-
nificance of our approach was evaluated on the task of automated
acoustic species recognition, where we focused on V. chilensis
vocalizations in real-field recordings. The advantageous perfor-
mance of the proposed method facilitates the incremental
improvement of technology with the medium-term goal of auto-
mated monitoring of indicator species and migratory birds in the
Brazilian Pantanal.

On a personal computer with processor Intel Xeon E3-1220 at
3.1 GHz and operating system Linux Ubuntu 12.04, the proposed
acoustic activity detector operates approximately 62 times faster
than real-time. We foresee the integration of the acoustic activity
detector in the large Pantanal Database Repository established by
the Computational Bioacoustics Research Unit (CO.BRA) at the
UFMT’s Institute of Computation.
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