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Abstract: In recent years, several automated and noninvasive methods for wildlife monitoring, such as
passive acoustic monitoring (PAM), have emerged. PAM consists of the use of acoustic sensors followed
by sound interpretation to obtain ecological information about certain species. One challenge associated
with PAM is the generation of a significant amount of data, which often requires the use of machine
learning tools for automated recognition. Here, we couple PAM with BirdNET, a free-to-use sound
algorithm to assess, for the first time, the precision of BirdNET in predicting three tropical songbirds
and to describe their patterns of vocal activity over a year in the Brazilian Pantanal. The precision of the
BirdNET method was high for all three species (ranging from 72 to 84%). We were able to describe the
vocal activity patterns of two of the species, the Buff-breasted Wren (Cantorchilus leucotis) and Thrush-like
Wren (Campylorhynchus turdinus). Both species presented very similar vocal activity patterns during
the day, with a maximum around sunrise, and throughout the year, with peak vocal activity occurring
between April and June, when food availability for insectivorous species may be high. Further research
should improve our knowledge regarding the ability of coupling PAM with BirdNET for monitoring a
wider range of tropical species.

Keywords: BirdNET; Campylorhynchus turdinus; Cantorchilus leucotis; confidence score; machine learning;
passive acoustic monitoring; troglodytidae; vocal behavior

1. Introduction

Owing to the current decline in biodiversity, there is a growing need for automated and
effective methods to improve wildlife monitoring [1]. Establishing an effective ecological
monitoring methodology is essential for determining changes in species richness and
population trends over time, which is needed for proper management and conservation of
natural ecosystems and biodiversity. Traditional monitoring methods, such as line transects
and point counts, require significant human effort, are limited in space and time, and
may be subject to biases and limitations, such as the experience and hearing ability of the
observer [2]. For this reason, numerous automated and noninvasive tools have emerged
in recent years [3–5]. These tools do not require human presence and can help monitor
ecological processes more effectively. However, it is important to test the effectiveness of
these tools and standardize them before they are implemented on a large scale [1].

Acoustic communication is used by many groups of animals to share information with
members of their own or other species. Therefore, monitoring species via acoustic cues is
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a common method for assessing changes in species abundance, population richness, or
community composition, among other factors. However, acoustic surveys are subject to
various biases on the basis of experience and the detection and identification capacity of
the observer [6]. To avoid such biases, in recent years, a novel noninvasive and automated
technique for wildlife monitoring, passive acoustic monitoring (PAM), has emerged [7].
PAM is based on the deployment of Autonomous Recording Units (ARUs) equipped
with acoustic sensors (microphones hereinafter), which are deployed in the field and
programmed to record at time periods of interest. The posterior analysis of the collected
recordings enables monitoring wildlife in an automated manner. In recent years, the use
of PAM has rapidly increased in both aquatic and terrestrial environments [7,8]. Among
the main reasons behind the growing use of this technique are the recent development of
low-cost recorders [9,10] and technical innovations in acoustic data processing, such as
BirdNET [11,12].

Passive acoustic surveys generate a significant amount of data that present challenges
for audio interpretation, and most projects require the use of automated signal recog-
nition software (e.g., [11,13,14]. Birds constitute the group most commonly studied via
PAM [7]; consequently, numerous recent studies have improved techniques and analyses
on the basis of the automatic acoustic recognition of birds [2]. Among these tools, the
recently introduced free machine learning tool BirdNET is worthy of attention. BirdNET
employs deep neural network algorithms for the automated detection and classification of
6500 wildlife species [11,15]. BirdNET algorithms are trained via vocalizations from various
species, including mainly birds but also some amphibians and primates (see [16–18]). One
of BirdNET’s key advantages over other automated detection software is that the recogniz-
ers are readily available, eliminating the need for advanced computer programming skills,
and can be easily operated via graphical interfaces on Windows platforms, thus avoiding
the complexity of programming languages such as R or Python. However, our current
knowledge about the ability of BirdNET to monitor tropical birds is very limited, without
any case studies published yet (reviewed by [15]).

Therefore, in this study, we aim to assess, for the first time, the effectiveness of BirdNET
in identifying three Neotropical passerine birds and to utilize this tool to gain new insights
into their ecological behavior. More specifically, we aimed to (1) evaluate the precision
of BirdNET in correctly identifying the vocalizations of three closely related Neotropical
passerines; (2) determine the optimal confidence threshold for each species, ensuring
that BirdNET predictions can be filtered to remove predictions with low confidence; and
(3) use BirdNET over a dataset of acoustic recordings collected over an entire year across five
acoustic monitoring locations in the Brazilian Pantanal to characterize the diel and annual
patterns of vocal activity of the studied species. This study aims to enhance the quality of
passive acoustic research via acoustic sensors and the BirdNET algorithm. Additionally, our
findings will improve the understanding of the ecology of tropical birds and the seasonal
dynamics within the Brazilian Pantanal, the largest wetland in the world.

2. Materials and Methods
2.1. Study Species

In this study, we used Buff-breasted Wren (Cantorchilus leucotis), Moustached Wren (Pheugo-
pedius genibarbis), and Thrush-like Wren (Campylorhynchus turdinus) as target species. The three
species are cataloged as “Least Concern” by the Red List of the International Union for Conser-
vation of Nature (IUCN). We selected these three species of the Troglodytidae family because
they are common birds in the Neotropics, are well distributed in the Brazilian Pantanal (see next
section), and are included in the latest version of BirdNET (v 2.4., [11]). Our current knowledge
regarding the vocal behavior of these three species is very limited, especially with respect to
Thrush-like Wren and Moustached Wren. Indeed, members of the same family will allow for
comparisons of whether the vocal activity patterns of closely related species are similar. Further-
more, as wetland species, they serve as prime examples of organisms inhabiting ecosystems
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that are logistically challenging to monitor because of their often damp and marshy ground and
typically dense but delicate vegetation [10,19].

The Buff-breasted Wren is an insectivorous and resident species typically observed
in pairs in dense tangles, inhabiting gallery and riverside forests and preferring humid
areas close to bodies of water [20,21]. Both sexes vocalize, and their main song exhibits
frequency modulation, which is described as a sequence from one to four syllables of “wop”
or “weeoh”. These songs are emitted as a duet [22].

Moustached Wrens are also insectivorous and resident, living in the dense understory
of humid forests and forest edges [23]. Its song is also normally emitted in duets [24], which
are characterized by a series of quick, happy phrases that are frequently repeated and are
sometimes followed by a quick “cho cho cho” [23].

The resident and insectivorous Thrush-like Wren has a cooperative character and
is usually found in groups [25]. They primarily inhabit the canopies of humid forests,
including disturbed areas [26]. Its song is described as a variable number of “chuk, chuk,
chu-rú” [25].

2.2. Study Area

The study was conducted in the northeastern part of the Brazilian Pantanal (Pantanal
matogrossense) and included five acoustic monitoring stations located near the SESC
Pantanal complex (Mato Grosso, Brazil; 16◦30′ S, 56◦25′ W), separated by distances ranging
from 430 to 1914 m. The Brazilian Pantanal is the largest wetland in the world, with a
flooded area of 140,000 km2. The acoustic monitoring stations were within a mosaic of
forested and savanna areas, which represent the dominant vegetation in the Brazilian
Pantanal and potential habitat of the three target species [27]. It is a flat area with altitudes
ranging from 80 to 100 m, an average annual temperature of 24 °C, and an average annual
rainfall ranging between 1000 and 1400 mm and is distributed seasonally [28]. The climate
is tropical and humid [13,27].

The study area was located within the alluvial plain of the Cuiabá River, one of the
main tributaries of the Paraguay River within the Pantanal [27], which in turn is one of
the main tributaries of the Paraná River [29], with a drainage area of 280,000 km2 [30].
This plain is characterized by seasonal floods, which cause transitions from terrestrial to
aquatic habitats and vice versa [31]. These floods are due to seasonal rainfall occurring
between October and April [27], during which 80% of the Pantanal is flooded [32] because
of the reduced runoff capacity of the drainage basin. The dry season occurs from May
to September [27], when water is lost through evaporation and infiltration [33]. Because
of these seasonal changes, the use of noninvasive techniques, such as PAM, can better
contribute to wildlife monitoring.

2.3. Recording Protocol

The acoustic monitoring stations operated daily from 8 June 2015 to 31 May 2016,
covering an annual cycle at each site. The locations in which they were placed were selected
to encompass the most representative plant formations of the Brazilian Pantanal (forests
and savannahs). A Song Meter SM2 recorder (Wildlife Acoustics, Maynard MA, USA) was
placed at each station. The recorders were programmed to record (.wav format) the first
15 min of each hour 24 h a day with a sampling frequency of 48 kHz and a resolution of
16 bits per sample [13]. Recorders were checked approximately every two weeks to down-
load data and change batteries.

2.4. Acoustic Data Analysis

BirdNET segments recordings into 3-second intervals, extracting signal characteristics
and detecting matches with its model of singing patterns; it reports detections accord-
ingly [11]. Moreover, BirdNET can identify multiple species within the same segment
and provides a quantitative confidence score for each detection, ranging from 0 to 1. This
score reflects the probability of accurately identifying the species, with a score of 1 indi-
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cating a near-perfect match to BirdNET’s understanding of the species [12,34]. The users
of BirdNET can adjust a threshold value to filter application results on the basis of their
desired confidence level. Optimizing for higher confidence values increases the accuracy
percentage of correct detections relative to all detections considered but might also reduce
the total number of detections. This can significantly reduce the number of false positives
but can increase the number of false negatives. However, there is currently a limited
understanding of how confidence values affect the accuracy of BirdNET species detection
(reviewed by [15]).

Once the recordings were completed, they were analyzed via the “Multiple Files”
tab in the GUI interface of BirdNET-Analyzer (version 2.4, https://github.com/kahst/
BirdNET-Analyzer, accessed on 12 August 2024) [11] We used the default values, which
were as follows: confidence threshold of 0.1, sensitivity parameter of 1.0, and no overlap
(0 s). We applied a “Custom Species List” filter to configure BirdNET to detect only the
three target species, thus avoiding the detection of nontarget species [10,12]. BirdNET
was programmed to process one recording at a time via four computer threads. The total
scanning time was approximately 142 h (2.3% of the total recording time).

2.5. BirdNET Performance Evaluation

To evaluate the effectiveness of BirdNET in detecting the three study species, the
detection accuracy was estimated for each species separately. Accuracy was assessed
without applying any confidence threshold filtering and was defined as the percentage
of correctly identified predictions out of the total predictions reviewed [35]. A sample
of 450 predictions was randomly selected from the BirdNET output for each species by
considering 50 predictions for each 0.1 confidence score class (i.e., 50 predictions with
confidence scores ranging between 0.1 and 0.2, 50 between 0.2 and 0.3, etc.). For each
prediction, an experienced observer listened and visually inspected the audio spectrogram
at the timestamp of the 3-second segment reported by BirdNET in the free software Audacity
(v 2.3., [36]) and verified whether the target species was present or absent. The BirdNET
precision was estimated (in %) by dividing the number of BirdNET predictions correctly
classified by the total number of BirdNET predictions verified.

2.6. Statistical Analyses

The 450 predictions verified for each species were also used to estimate the confidence
score threshold with a 90% probability of correct identification for each species. This esti-
mate allowed us to filter the BirdNET output by removing predictions with low confidence
scores and deriving ecological results (see first application in birds’ vocal activity in [12]).
We opted for 90% confidence to keep a high number of predictions and because prior
research has found no notable differences when describing singing patterns using high,
although variable, confidence scores [17]. We followed the approach outlined in [12] (see
also [17] for first application in anurans), so we back-transformed BirdNET’s confidence
scores into its original logit scale. Then, for each of the three species, we fitted a logistic
regression using the correct or incorrect classification of the verified predictions as a re-
sponse variable and the BirdNET logit-scale prediction score as the independent variable.
The logistic regressions provided an equation that enabled us to convert BirdNET scores
into the probability of a given prediction being correct. For each species, the equations
considering a probability of correct identification of 90% were as follows:

Threshold = (ln (p/(1 − p)) − α)/β, (1)

where p is the threshold selected (0.90 in our case), α is the intercept of the logistic regression,
and β is the slope of the regression.

The identified optimal score was used as a confidence score threshold to finally
consider only BirdNET predictions with a high probability of correct identification when
describing the diel and seasonal patterns of vocal activity of the three monitored species.

https://github.com/kahst/BirdNET-Analyzer
https://github.com/kahst/BirdNET-Analyzer
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The patterns of vocal activity were described by pooling the data from the five acoustic
monitoring stations.

3. Results
3.1. BirdNET Performance

The BirdNET precision slightly varied among the three species (Table 1). The lowest
precision was reached for the Moustached Wren and the Buff-breasted Wren, for which 326 and
344 of the 450 BirdNET predictions verified for each species were correctly classified (precision
of 72.4% and 76.4% for the Moustached Wren and the Buff-breasted Wren, respectively, Table 1).
The highest precision was reached for the Thrush-like Wren (84% precision, Table 1), for which
378 of the 450 BirdNET predictions verified were correct. The probability of BirdNET correctly
classifying a bird vocalization varied depending on the confidence value of the predictions,
with greater precision at higher confidence values. For example, the average BirdNET precision
for the three target species at confidence score values between 0.1 and 0.5 was 61% (366 bird
vocalizations correctly detected among 600 BirdNET predictions verified), whereas at confidence
scores above 0.5, the average BirdNET precision was 90.9% (682 of the 750 BirdNET predictions
verified correctly classified, Table 1).

Table 1. The number of BirdNET predictions correctly classified and the BirdNET precision (in %) for
detecting three Neotropical passerines. The values are shown separately for each species and for the
following confidence score interval classes: 0.1–0.3; 0.3–0.5; 0.5–0.7; >0.7; and for the whole range,
0.1–1. For each confidence interval class, a total of 100 predictions were verified for each species,
except for the class > 0.7, for which 150 predictions were verified.

Species Predictions 0.1–0.3 0.3–0.5 0.5–0.7 >0.7 0.1–1

Moustached Wren
Correct 60 66 87 113 326

Precision 60% 66% 87% 75.3% 72.4%

Buff-breasted Wren
Correct 42 66 87 149 344

Precision 42% 66% 87% 99.3% 76.4%

Thrush-like Wren
Correct 47 85 98 148 378

Precision 47% 85% 98% 98.7% 84%

After the logistic regressions were fit, the minimum confidence score to consider only
detections with a 90% probability of correct identification was 0.603 for the Buff-breasted
Wren (Figure 1A) and 0.428 for the Thrush-like Wren (Figure 1B). Owing to the lower
precision of BirdNET for correctly detecting the Moustached Wren, especially at high
confidence score intervals (see Table 1), it was impossible to identify an optimal confidence
score that was able to correctly predict the vocalization of the species; therefore, its vocal
behavior was not described.

Sensors 2024, 24, x FOR PEER REVIEW  6  of  16 

score that was able to correctly predict the vocalization of the species; therefore, its vocal 

behavior was not described. 

Figure 1. The results of the logistic regression (blue line) showing the relationship between the prob-

ability of a correct BirdNET prediction and the confidence score of a given prediction for the (A) 

Buff-breasted Wren and  the  (B) Thrush-like Wren. Statistical analyses were performed using  the 

BirdNET logit-scale of the prediction score as an independent variable, but we represent the original 

confidence score of BirdNET for graphical purposes. The red solid lines show the optimal confidence 

score threshold identified for each species.   

3.2. Vocal Activity Patterns 

After applying the confidence thresholds, the sample size used for the description of 

the song patterns was 13,612 vocalizations for Thrush-like Wren and 491 for Buff-breasted 

Wren. To facilitate reading, hereinafter, we use the term vocalization when referring to 

the BirdNET predictions filtered. The daily vocal activity patterns of both species were 

very similar (Figure 2). Both the Thrush-like Wren and the Buff-breasted Wren exhibited 

a bimodal vocal activity pattern, with peaks around sunrise and sunset and  low vocal 

activity during the central hours of the day and almost none during the night (Figure 2). 

The largest peak vocal activity of both species occurred during the three hours after sun-

rise, with over 50% of  the  total vocal activity recorded between 6 a.m. and 8 a.m.  (see 

detailed tables of the hourly vocal activity of each species per station in Appendix A (Ta-

bles A1 and A2). 

Figure 1. The results of the logistic regression (blue line) showing the relationship between the



Sensors 2024, 24, 5780 6 of 14

probability of a correct BirdNET prediction and the confidence score of a given prediction for the
(A) Buff-breasted Wren and the (B) Thrush-like Wren. Statistical analyses were performed using the
BirdNET logit-scale of the prediction score as an independent variable, but we represent the original
confidence score of BirdNET for graphical purposes. The red solid lines show the optimal confidence
score threshold identified for each species.

3.2. Vocal Activity Patterns

After applying the confidence thresholds, the sample size used for the description of
the song patterns was 13,612 vocalizations for Thrush-like Wren and 491 for Buff-breasted
Wren. To facilitate reading, hereinafter, we use the term vocalization when referring to
the BirdNET predictions filtered. The daily vocal activity patterns of both species were
very similar (Figure 2). Both the Thrush-like Wren and the Buff-breasted Wren exhibited a
bimodal vocal activity pattern, with peaks around sunrise and sunset and low vocal activity
during the central hours of the day and almost none during the night (Figure 2). The largest
peak vocal activity of both species occurred during the three hours after sunrise, with over
50% of the total vocal activity recorded between 6 a.m. and 8 a.m. (see detailed tables of
the hourly vocal activity of each species per station in Appendix A (Tables A1 and A2).
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Figure 2. The daily pattern of vocal activity of the Thrush-like Wren (black) and the Buff-breasted
Wren (blue) in the Brazilian Pantanal. The daily pattern of vocal activity refers to the percentage
of vocalizations above the optimal confidence score detected per hour for each species. Times are
expressed in terms of local winter time (UTC-4) and number.

The Buff-breasted Wren and the Thrush-like Wren exhibited similar vocal behavior
patterns, with peaks in vocal activity occurring between March and June during the onset
of the dry season (Figure 3). The percentage of vocalizations detected between March
and June, relative to the total, was 43.6% for the Thrush-like Wren and 46.0% for the Buff-
breasted Wren. However, both species presented secondary vocal activity peaks during
the remainder of the year, especially in December (12.0% of the total for the Buff-breasted
Wren and 8.9% for the total for the Thrush-like Wren). Overall, both species displayed
similar singing activity patterns throughout the year. Furthermore, both the Buff-breasted
Wren and the Thrush-like Wren were detected throughout the entire annual cycle (Figure 3).
Detailed tables of the monthly vocal activity of each species per station can be found in
Appendix A (Tables A3 and A4).
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4. Discussion

In this study, we validated, for the first time, the use of acoustic sensors coupled with
BirdNET, a free-to-use and user-friendly machine learning tool, for detecting and studying
the ecology of tropical birds. The mean precision of BirdNET for correctly identifying the
three target species was similar and high (range 72–84%). However, owing to variations
among species in the ability of BirdNET to correctly classify their vocalizations at high
confidence scores (Table 1), it was impossible to estimate an optimal confidence score,
which aimed to filter BirdNET output and retain only predictions with a high probability of
being correct (>90%), for the Moustached Wren. We were able to estimate such an optimal
confidence score threshold for the other two species, which allowed us to describe their
vocal activity patterns using only BirdNET predictions with a high probability of being
correctly identified. We are aware that the definition of what is an optimal confidence score
threshold may vary among studies; therefore, users may select one or another threshold
according to their research goal. For example, a low confidence score threshold may
be selected and followed by output verification, if the aim is to detect the presence of
threatened or invasive species, to facilitate effective management (e.g., [18,37]), whereas
the aim to describe vocal activity patterns may be enough to select a high confidence score
threshold without further output verification (e.g., [12,17]). When the average precision
obtained in this study for the three target species (77.6%) was compared with the average
precision for 984 species of European and North American birds (79.0%) [11], we observed
that the precisions for the three tropical birds were very similar. This result is even more
surprising considering that the precision estimated for European and North American birds
was calculated via focal recordings and therefore collected with high-quality directional
microphones, whereas our recordings were collected with omnidirectional microphones.
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Various authors have suggested that to work with most species through BirdNET,
it is appropriate to use confidence score threshold values greater than 0.5 [15,38] and
even values that range between 0.7 and 0.8, as these values yield the greatest number
of correct identifications (95% probability of correct identification) [39]. However, prior
research, using the same approach as in our study, identified optimal confidence scores
lower than 0.5 to retain only predictions with high probabilities of being correctly identified
(see [12]), which suggests the need for species-specific research. Our findings also suggest
that estimating an optimal confidence score might not be possible for certain species but
might be highly variable even among closely related species (0.603 for the Buff-breasted
Wren and 0.428 for the Thrush-like Wren). These findings are in agreement with prior
research proving the existence of large variations in optimal confidence scores among
studies for the same species (see, e.g., [39–41]). Indeed, the effectiveness of BirdNET
correctly identifying bird vocalizations may vary among areas and periods of the day due
to variations in ambient noise (e.g., [42]). Further research should explore the reasons
behind these variations in BirdNET precision among species and among studies. In the
meantime, we must be cautious when extrapolating the precision and optimal confidence
scores between species and/or studies [15]. Likewise, further research should assess the
ability of BirdNET to detect bird vocalizations with an acoustic metric known as the recall
rate, which is not frequently evaluated in BirdNET surveys [15].

Both the Buff-breasted and the Thrush-like Wren showed a bimodal vocal activity
pattern, in line with the daily patterns described for most bird species (reviewed by [43]),
including other Neotropical wrens (e.g., Campylorhynchus rufinucha, [44]) and other song-
birds in the study area (e.g., [42]). Both species presented the largest peak of vocal activity
around dawn and a second, lower peak around dusk. Our results agree with prior descrip-
tions of the Buff-breasted Wren’s daily singing pattern, with pairs singing together near
sunrise, a decrease in activity during the late morning and afternoon, and a second peak
of singing activity in the evening [20]. This second peak of activity has been proposed to
improve communication between members of the same pair, with both mates vocalizing
in the evening before entering their nests or roosts [22]. Our findings constitute the first
description of the daily singing pattern of the Thrush-like wren, which overall agrees with
the results reported for other Neotropical wrens ([44], Figure 2). However, our current
knowledge regarding the factors influencing diel vocal activity patterns of tropical birds is
very limited (but see, e.g., [45–49]).

Both species also presented very similar seasonal patterns of singing activity, with
relatively constant vocal activity throughout the year but with a relatively large peak of
singing during the period of March–June. The detection of both species over a complete
year confirms their status as resident species in the Brazilian Pantanal [50,51]. Both species
are territorial, and their songs have been proposed to serve multiple functions, including
as a territorial defense [20,44], which may contribute to explaining the relatively consistent,
although a low pattern of singing observed throughout the year. Research has shown
that seasonal changes in water levels affect bird ecology, including nesting, feeding, and
vocal patterns [31,52–55]. The Brazilian Pantanal experiences annual floods, resulting in
seasonal variations in terms of insect abundance and diversity [56]. Therefore, the peak of
singing activity between March and June is likely related to changes in insect abundance
in response to the pronounced seasonality of the Brazilian Pantanal region. For example,
studies indicate peaks in the abundance of several dipteran species and ants at the end
of the wet season and start of the dry season, typically between May and July, driven by
climatic conditions [57,58], with ants being a crucial food resource for many Neotropical
insectivorous passerines [59]. Overall, the increased food availability following water
recession may stimulate the reproduction of both wrens during this period and therefore
explain the peak of singing activity since songs of Neotropical wrens are also used for mate
attraction and pair bonding [20,44].

The proposed periods for breeding, which are based on seasonal changes in singing
activity, require further research, together with field observations, to characterize the
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breeding ecology of the target species better and to assess whether their nesting behavior
is influenced by the flood dynamics of the Pantanal. Indeed, we cannot rule out that the
observed decrease in vocal activity during the wet season might be associated with a lower
amount of time spent near the recorders as flooded areas shrink, making food searches
more challenging [60,61]. Moreover, diminished vocal activity during the rainy season
might result from inefficiencies caused by rain masking vocalizations [62,63] or individuals
seeking shelter [64].

5. Conclusions

We provide the first assessment of the effectiveness of acoustic sensors coupled with
BirdNET, a new tool for processing acoustic data, for correctly identifying and monitoring
the vocal activity of three Neotropical passerine birds. The precision of BirdNET for
correctly identifying the three species was high, although it was variable. Indeed, it was
not possible to identify an optimal confidence score threshold for one of the species. The
optimal confidence scores identified in that study, although valuable as starting points
for further research with the target species, should be assessed if they are to be applied
in different regions. The other two wrens considered showed similar diel and seasonal
patterns of singing activity, with increased vocal output around the crepuscular periods
and during the dry season, when insect abundance and availability might be high. Further
research should evaluate the performance of BirdNETs for monitoring a broader range of
tropical species, including assessments of the ability of BirdNET to detect bird vocalizations
(recall rate). We hope that this study will encourage researchers and managers to utilize
this readily available tool to generate valuable scientific data. The use of acoustic sensors,
coupled with BirdNET, might be especially useful for improving our current knowledge
regarding the ecology of tropical and wetland birds, which are species for which there is
limited knowledge and challenging monitoring.
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Figure A1. Screenshot showing the criteria entered in the BirdNET-Analyzer analysis. In the two upper
boxes, the paths of the folders where the audio recordings to be analyzed are located (select directory)
and where the outputs are saved after analysis (select output directory) are identified. Below these two
boxes are the default values for the parameters: minimum confidence: 0.1; sensitivity: 1; overlap: 0. In the
“Species Selection” tab, the filter is applied by uploading a text file in the “File” tab, in which the names of
the two target species are written. Finally, the BirdNET output was saved as a “Raven selection table”,
which is a type of file in txt format. The analysis was configured to process one recording at a time and use
four CPU threads, matching the default settings of the software.

Table A1. The number of vocalizations per hour of the Buff-breasted Wren detected at each of the
five acoustic monitoring stations in the Pantanal matogrossense (Brazil). The predictions shown
are filtered on the basis of a threshold value ensuring a confidence value higher than the threshold,
indicating a 90% probability of accuracy. Additionally, other parameters included the total number
and percentage of vocalizations per hour relative to the overall vocalizations recorded.

Hour Station A Station B Station C Station D Station E Total %

00 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0
05 0 16 2 1 3 22 4.48
06 11 32 41 8 23 115 23.42
07 4 28 18 2 20 72 14.66
08 7 12 23 13 11 66 13.44
09 1 3 15 14 6 39 7.94
10 2 0 10 11 7 30 6.11
11 2 0 5 4 8 19 3.87
12 1 1 12 9 0 23 4.68
13 2 4 11 5 0 22 4.48
14 1 0 7 6 0 14 2.85
15 2 3 5 4 3 17 3.46
16 0 0 7 0 1 8 1.63
17 2 16 4 5 9 36 7.33
18 0 0 5 2 1 8 1.63
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Table A1. Cont.

Hour Station A Station B Station C Station D Station E Total %

19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0

TOTAL 350 115 165 84 92 491

Table A2. The number of vocalizations per hour of the Thrush-like Wren detected at each of the
five acoustic monitoring stations in the Pantanal matogrossense (Brazil). The predictions shown are
those filtered on the basis of a threshold value ensuring a confidence value higher than the threshold,
indicating a 90% probability of accuracy. Additionally, other parameters included the total number
and percentage of vocalizations per hour relative to the overall vocalizations recorded.

Hour Station A Station B Station C Station D Station E Total %

00 0 0 2 0 1 3 0.02
01 0 0 1 2 1 4 0.03
02 1 0 1 1 1 4 0.03
03 0 0 0 0 0 0 0
04 0 2 3 1 4 10 0.07
05 6 10 8 466 267 757 5.56
06 221 125 41 2661 1005 4053 29.78
07 215 85 11 1270 689 2270 16.68
08 150 32 3 822 443 1450 10.65
09 97 19 2 665 250 1033 7.59
10 73 11 5 464 125 678 4.98
11 48 6 1 227 144 426 3.13
12 59 4 0 164 144 371 2.73
13 30 6 1 129 121 587 2.11
14 71 3 2 141 48 265 1.95
15 111 1 0 69 129 310 2.28
16 51 0 3 91 58 203 1.49
17 14 12 0 691 279 996 7.32
18 1 4 67 294 87 453 3.33
19 0 1 0 8 3 12 0.09
20 0 1 5 2 0 8 0.06
21 0 0 4 6 3 13 0.1
22 0 0 5 0 0 5 0.04
23 0 0 1 0 0 1 0.01

TOTAL 1148 322 166 8174 3802 13,612

Table A3. The number of vocalizations per month of the Buff-breasted Wren detected by each
sampling station. The predictions shown are those filtered on the basis of a threshold value ensuring
a confidence value higher than the threshold, indicating a 90% probability of accuracy. Additionally,
the total number and percentage of monthly vocalizations relative to the overall total vocalizations
are provided.

Month Station A Station B Station C Station D Station E Total %

June 2015 0 5 0 1 3 9 1.83
July 2015 0 13 10 11 10 44 8.96

August 2015 0 13 6 4 1 24 4.89
September 2015 0 4 12 0 2 18 3.67

October 2015 0 4 11 8 3 26 5.3
November 2015 10 8 11 1 1 31 6.31
December 2015 3 31 19 5 1 59 12.02

January 2016 3 7 14 20 0 44 8.96
February 2016 3 5 3 20 3 31 6.31
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Table A3. Cont.

Month Station A Station B Station C Station D Station E Total %

March 2016 6 0 53 4 11 74 15.07
April 2016 7 0 20 3 29 59 12.02
May 2016 3 28 6 7 28 72 14.66

TOTAL 35 115 165 84 92 491

Table A4. The number of vocalizations per month of the Thrush-like Wren detected by each sampling
station. The predictions shown are those filtered on the basis of a threshold value ensuring a
confidence value higher than the threshold, indicating a 90% probability of accuracy. Additionally,
the total number and percentage of monthly vocalizations relative to the overall total vocalizations
are provided.

Month Station A Station B Station C Station D Station E Total %

June 2015 0 24 20 1032 349 1425 10.47
July 2015 0 33 334 612 269 948 6.96

August 2015 0 30 23 642 299 994 7.3
September 2015 0 68 25 407 148 648 4.76

October 2015 29 10 35 590 298 962 7.07
November 2015 46 6 14 442 464 972 7.14
December 2015 235 9 3 738 221 1206 8.86

January 2016 142 11 6 412 299 870 6.39
February 2016 70 3 1 477 206 757 5.56

March 2016 53 67 1 726 386 1233 9.06
April 2016 79 32 3 796 210 1120 8.23
May 2016 494 29 1 1300 653 2477 18.2

TOTAL 1148 322 166 8174 3802 13,612
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