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ORIGINAL ARTICLE
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ABSTRACT
Seasonality significantly affects environmental changes in the Pantanal, especially during wet and 
dry periods. Inundation and drought impact the onset of flowering and fruiting and the occur
rence of insects. Because such resources may vary across seasons, it is expected that avian 
functional diversity also changes. We examine how functional diversity changed over time, as 
measured by functional richness and functional divergence. For functional richness, we observed 
a functionally overdispersed bird community over the seasons, whereas for functional divergence, 
two different patterns were found: (1) functionally overdispersed bird communities during the 
wet and receding seasons and (2) functionally clustered avian communities in the dry and rising 
seasons. The diversity of functional groups did not significantly vary across the seasons, as 
expected, but varied between forests and savannas. The environment has restricted resources 
in certain seasons, benefiting species with specific functional characteristics, however, bird 
species in the Pantanal are often generalists adapted to using a wide variety of food resources. 
Although the habitat turnover rate is an important factor that influences bird species composition 
across seasons, the changes in species composition still allowed the maintenance of certain 
functional characteristics, contributing to conservation of the existing functional groups in the 
ecosystem.
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Introduction

Functional diversity of communities is defined by 
grouping species according to similar biological or 
ecological characteristics (Tilman 2001; Petchey & 
Gaston 2002; Schleuter et al. 2010; Cadotte et al.  
2011; Weiher 2011). This approach allows us to under
stand ecosystem functioning, community organization, 
coexistence among species, interactions among species, 
and environmental change (Lavorel & Garnier 2002; 
Folke et al. 2004; McGill et al. 2006; Díaz et al. 2007; 
Mason et al. 2007; Mouillot et al. 2007; Weiher 2011; 
Hanspach et al. 2012).

Considering that species play a role in the environ
ment in which they coexist, environmental character
istics and life histories will determine how these 
interactions occur (Hagen et al. 2012; Ewers et al.  
2013). Specific attributes, such as morphological, phy
siological, and ecological features, represent the func
tional attributes of species, and these features are 
directly affected by environmental filters (Jax 2005; 
Violle et al. 2007). Therefore, climatic and 

environmental variations are drivers of functional 
diversity (Díaz et al. 2007). Limiting factors caused by 
environmental changes, such as fire, flooding, and 
drought, will determine species survival, resulting in 
the selection of those that are suitable and that have 
specific functional attributes adapted to the imposed 
conditions (Zobel 1997; Grime 1998; Hérault 2007; 
Barbosa et al. 2009). Thus, species may converge in 
their characteristics and have similar functions that 
allow them to co-occur in the environment and share 
the available resources (Tilman 1986; Levey 1988; 
Develey & Peres 2000; Ernest et al. 2000).

According to the environmental filtering hypothesis, 
environmental factors such as topography, soil, cli
matic conditions, and interactions among species are 
the main determinants of diversity and functional 
group richness (Weiher & Keddy 1995, 1999; Díaz 
et al. 1998; Mason et al. 2011; De Bello et al. 2013a,  
2013b; Kraft et al. 2015). Therefore, environmental 
filters together with immigration, speciation, and com
petitive exclusion influence the community composi
tion through regional and local biogeographical 
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processes (Weiher et al. 1998; Loreau 2000; Shurin & 
Srivastava 2005; Fukami et al. 2007). Species with dif
ferent or similar functional attributes will be able to 
coexist according to their ability to survive under 
imposed environmental conditions and competition 
(Hardin 1960; MacArthur & Levins 1967; Stubbs & 
Wilson 2004).

As a result of environmental changes, interactions 
and function may not remain constant (Kremen et al.  
2007; Tremlová & Münzbergová 2007; Mouchet et al.  
2010), as observed when environmental functions in 
bird communities are affected by anthropic activities 
(Fischer et al. 2007; Tscharntke et al. 2008; Clough 
et al. 2009; Flynn et al. 2009). For example, during 
floods in the Pantanal, terrestrial and understory 
birds that feed on insects and other invertebrates 
move to non-inundated areas or to higher vegetation 
strata to find such resources (Adis et al. 2001; Adis & 
Junk 2002; Marques et al. 2007; Battirola et al. 2007,  
2010; Donatelli et al. 2014). Therefore, understanding 
how species abundance, guilds, and the proportions of 
functional groups are affected by environmental 
changes is fundamental for ecology and useful for 
developing conservation strategies for threatened 
species.

Several statistical measures and indexes have been 
proposed to calculate functional diversity (Walker et al.  
1999; Petchey & Gaston 2002; Mason et al. 2005; 
Villéger et al. 2008). Functional richness (FR) and 
functional divergence (FD) are two of the main com
ponents of functional diversity and indicate, respec
tively, the number of attributes the community has 
and how each taxon differs within the categories of 
each attribute (Mason et al. 2005). Using these compo
nents, it is possible to understand the degree of niche 
differentiation of the species and infer the resource 
availability in the environment. Niche diversification 
will determine the type of functional organization of 
communities, e.g., a functionally clustered bird com
munity is expected to occur in savannas, where species 
have similar functional traits, in response to environ
ments affected by frequent disturbances, such as fire 
and drought (Weiher & Keddy 1995; Sobral & 
Cianciaruso 2016). In forests, however, which are con
sidered relatively stable and structurally complex envir
onments, functionally overdispersed bird communities 
are expected, as the species dispersal capability rather 
than the niche is considered to be the most important 
factor determining functional groups (Mouchet et al.  
2010; Sobral & Cianciaruso 2016). Therefore, in forest 
habitats, birds of different guilds with different func
tional attributes will supposedly be able to find 
resources for their survival, as these habitats do not 

face drastic environmental changes, such as frequent 
burning and drought, as observed in some forests of 
the southern Pantanal where the bird community was 
seasonally more stable (Donatelli et al. 2014).

The Brazilian Pantanal is characterized as a dynamic 
ecosystem comprising several phytophysiognomies that 
are annually affected by floods (Nunes da Cunha et al.  
2007; Junk et al. 2014). Contrasting conditions ranging 
from dry to flooded environments in different seasons 
affect resource availability. Because they are exposed to 
such environmental changes, bird species in the 
Pantanal may migrate or adapt in response to season
ality. The objective of this study was to investigate the 
temporal changes in the landbird community FR and 
FD in forest and savanna habitats across the four 
seasons in the Pantanal. It was expected that the func
tional diversity (FR and FD) would be similar between 
forests and savannas within each season, e.g., many 
different functional characteristics occurring during 
the dry season (higher bird diversity) and few func
tional characteristics in the wet season (lower bird 
diversity). Despite the fact that most of the bird species 
in the Pantanal are considered to be generalists (Signor 
& Pinho 2011), it was also expected that the diversity of 
functional groups would change across seasons because 
many species show migration or dispersal patterns, 
indicating the existence of clear species turnover in 
this ecosystem (De Deus et al. 2020).

Materials and methods

Sampling design and data collection

General information
Our study was conducted in the northeastern Pantanal 
in the SESC Pantanal area, Poconé, Mato Grosso, Brazil 
(16°39’S, 56°47ʹW) (Figure 1). This protected region 
comprises an area of approximately 4200 ha and is 
part of the Cuiabá River floodplain.The mean annual 
precipitation in the region of Poconé is c. 1400 mm, 
considering the flatter relief shape and the north posi
tion of this area the floods are shallower by 2 m depth 
range over the wet seasons between January to March 
(Nunes da Cunha & Junk 2004). Precipitation and tem
perature was recorded by a weather station at our study 
site and is shown in Figure 2. The annual flood cycles 
are divided into four seasons characterized as (1) wet, 
with the highest levels of flooding from January to 
March; (2) receding, when the level of the water starts 
to decline from April to June; (3) dry, the terrestrial 
phase caused by a strong hydric deficit from July to 
September; and (4) rising, starting with the onset of 
precipitation from October to December (Heckman  
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Figure 1. Study area and the mist nets sampling sites in the northeastern Pantanal, Mato Grosso, Brazil. Forests sampling sites are 
indicated as F1, F2, F3, F4, and savannas as S1, S2, S3, S4.

Figure 2. Precipitation and temperature over two annual cycles in one region of northeastern Pantanal, Poconé, Brazil.
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1998). Eight sampling sites separated by at least 1 km 
were established. To capture the variation in vegetation, 
we randomly selected four savanna sites characterized 
mainly by scattered trees and a large proportion of 
grassland and shrubs and four forest sites defined 
mainly by a high proportion of large trees that form 
a coherent canopy structure. Forests were sampled 26 
times and savannas 25 times over the 24 months of data 
collection from July 2014 to July 2016.

We captured birds using mist-nets (9 × 2.7 m, 
20 mm mesh size, Bibby et al. 2000) that were open 
from 6:00–11:00 h and 15:00–17:00 h (Robbins 1981). 
Ten nets, separated by 200–250 m, were used in each 
site for six consecutive days each season. Avian nomen
clature follows the South American Classification 
Committee (Remsen et al. 2009). This study is part of 
the biodiversity monitoring project Sounds of the 
Pantanal, Computational Bioacoustics Research Unit 
(www.cobra.ic.ufmt.br, INAU/UFMT/CNPq/INCT), 
conducted under SISBIO permit no. 39095 (K.-L. 
Schuchmann).

Functional structure
To quantify functional diversity, the following func
tional traits were used: avian guild, body size, and stra
tum that each species occupied. Guilds were 
insectivores, omnivores, frugivores, granivores, nectari
vores, and piscivores. Species were grouped according to 
their dominant food resources (Wilman et al. 2014). 
Body size was a composite that comprised body mass, 
total length, bill length and width, wing length, tail 
length, and tarsus length. Birds were weighed on 
a spring balance (Pesolas®), and measured by 
a handheld caliper (accuracy of ±0.1 mm). We used 
the average of each morphometric category of each 
species. Foraging strata were ground, understory, mids
tory, canopy, and water, and seven associations among 
these categories were used because birds use more than 
one foraging stratum: midstory to canopy, terrestrial to 
canopy, terrestrial to midstory, terrestrial to understory, 
terrestrial and aquatic, understory to canopy, and 
understory to midstory (Stotz et al. 1996).

Statistical analysis
Because variables were categorical and numerical/con
tinuous, the dist.ktab method (distance coefficient of 
mixed variables) was applied, which generalizes the 
Gower’s general distance coefficient, allowing the treat
ment of several statistical types of variables in the calcu
lation of distances. This function is included in the ade4 
package of R, and we used this modified Gower distance 
to treat various types of variables, as our measure of 
functional diversity (Pavoine et al. 2009). We calculated 

functional diversity following Petchey and Gaston 
(2002). The dendrogram generated based on the mea
sure of functional diversity quantifies the extent of com
plementarity among species trait values by estimating 
the distances between species in trait space. We used 
null models and calculated the two main functional 
components, FR and FD, for forests and savannas across 
all the seasons. The null models help to identify which 
process, competition or environmental filtering deter
mines the functional groups (Mason et al. 2007). To 
calculate the FR, we used the standardized effect size 
of phylogenetic diversity in communities (ses.pd), and 
the standardized effect size of mean pairwise distances 
in communities (ses.mpd) was used to calculate the FD 
(software package picante; Kembel et al. 2008). These 
metrics are applied to quantify the relative excess (over
dispersion) or deficit (clustering) of the phylogenetic 
diversity of certain species groups in the pooled com
munity (Mazel et al. 2016). These phylogenetic metrics 
were used to create a functional dendrogram but not to 
perform phylogenetic analyses in this study. These 
metrics were employed because phylogenetic trees and 
functional dendrograms have the same structure.

The calculated FR is the number of functional attri
butes in the community. Large values of FR indicate 
that many different groups use the available resources. 
Therefore, values farther from zero (in both the posi
tive and negative directions) have a greater effect on 
functional diversity than those closer to zero. The FR 
test provides values of the FR, standardized by the 
richness and represents the functional diversity values 
in comparison to those expected by the null model. In 
other words, these FR measures represent 
a comparison of the existing functional diversity and 
the expected by chance based only on the richness of 
the community. Thus, positive values represent higher 
FR than that expected for the richness. Negative values 
represent a lower FR than that expected for the rich
ness. In contrast, FD indicates how the attributes are 
distributed within the space of functional characteris
tics. For example, in the functional group represented 
by granivores birds, we can find species with different 
characteristics, such as longer or shorter beaks, and 
these differences in species characteristics within the 
same functional group are encompassed by FD.

We randomized the community data matrix with 
the independent swap algorithm, maintaining species 
occurrence frequency and sample species richness 
(Kembel et al. 2008). Positive values of ses.pd and ses. 
mpd indicate functional overdispersion, meaning the 
values are greater than expected based on species rich
ness. Negative values of ses.pd and ses.mpd indicate 
functional clustering, with values lower than expected 
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on the basis of the observed species richness (Weiher & 
Keddy 1995). We used analysis of variance (ANOVA) 
with the observed functional diversity to compare habi
tats and seasons. We applied the Mantel test to identify 
correlations between time (i.e., date of data collection) 
and bird species dissimilarity, thus avoiding mistakes 
in interpretations as a result of temporally autocorre
lated data (Legendre & Fortin 2010; Legendre et al.  
2015). The analyses were performed in R (R 
Development Core Team).

Results

At our study site, we recorded 132 species, approxi
mately 40% of all landbird species known in the 
Pantanal. We captured 2,104 individuals from 104 gen
era and 26 families, and 2,013 individuals were mea
sured. Landbirds (2,025 individuals) comprised 96% of 
the captures, followed by semi-aquatic birds (three 
kingfishers, one heron, 79 individuals).

Functional richness and divergence

Considering the FR, forests had positive values in all 
four seasons, indicating a greater FR than that expected 
by chance (overdispersion) (Table 1). FR in one forest 
sampling unit was negative, during rising season. For 
savanna environments, FR was positive in all areas and 
seasons (Table 1). FR was large and positive when 
forests and savannas were analyzed together.

When the standardized effect size of the mean pair
wise distance was calculated for the FD, we found that 
forest areas showed positive and negative values 
throughout all seasons except the receding season. We 
observed that the receding season had higher values of 
FD than expected based on the richness, showing that 
taxa differ greatly within the categories of each attri
bute. In savannas, positive values of FD predominated 
during the wet and receding seasons, and negative 
values predominated in the dry and rising seasons. 
Considering the FD in both forests and savannas, 

a functionally clustered (negative values) and function
ally overdispersed (positive values) bird community 
was observed in the dry/rising and wet/receding sea
sons, respectively. Negative values were found in five 
areas during the dry season and in six areas during the 
rising season. No pattern of FR and FD was detected 
during dry and wet season to one forest site, since the 
small number of captured species in these periods.

In the dendrogram, avian guilds were the main units 
considered in the formation of groups. Species occupy
ing different foraging strata were found in all guild 
groups. Morphometric characteristics were visible in 
the separation of groups of species with a relatively 
high body mass and total length, separating them 
from the other species that were members of the 
same guild, such as Dendrocolaptes platyrostris (INS), 
Butorides striata (PIS), and Crypturellus undulatus 
(OMN) (Figure 3). ANOVA showed significant differ
ences in FR among habitats, but season and the habi
tat/season interaction did not have significant effects 
(Figure 4).

Discussion

Forests

For the Pantanal forests, the predominance of positive 
FR values indicates a functionally overdispersed bird 
community, a pattern to be expected for such habitats 
due to the lower frequency of natural disturbances than 
that observed in savannas (Furley 2006; Mouchet et al.  
2010; Sobral & Cianciaruso 2016). In comparison to 
savannas, forests are considered to be more stable 
environments a greater number of potential niches, 
allowing for the co-occurrence of species. In the rising 
season, a negative FR occurred in a monodominant 
Cambará tree forest (Cambarazal, Vochysia divergens). 
Due to the predominance of one tree species, the avian 
diversity was closely related to vegetation phenological 
patterns, such as flowering and fruiting. Cerrado for
ests were found to be functionally clustered by Sobral 

Table 1. Data of functional richness (FR) and functional divergence (FD) expressed as ses.pd (standardized effect size of phylogeny) 
and ses.mpd (standardized effect size of mean pairwise distances), respectively, in forests and savannas during two annual cycles in 
northeastern Pantanal, Mato Grosso, Brazil. Forests sampling sites are indicated as F1, F2, F3, F4, and savannas as S1, S2, S3, S4.

Wet Receding Dry Rising

Species FR FD Species FR FD Species FR FD Species FR FD

Forest F1 14 0.91 0.38 14 0.72 0.07 12 0.87 −0.12 21 0.77 −0.23
F2 1 - - 5 2.21 0.11 1 - - 5 1.91 0.31
F3 8 1.27 0.23 3 2.03 0.07 14 0.88 0.11 16 0.56 0.04
F4 7 0.70 −0.30 3 3.27 0.11 30 0.41 −0.36 28 −0.26 −0.08

Savanna S1 35 0.84 0.03 28 1.02 0.15 32 0.57 −0.31 34 0.61 −0.12
S2 43 0.58 0.16 37 0.85 0.11 26 0.86 0.01 43 0.28 −0.09
S3 32 0.31 0.02 31 0.12 0.34 52 0.52 −0.28 24 0.45 −0.11
S4 25 1.00 0.28 22 0.65 −0.26 48 0.50 −0.25 48 0.38 −0.21
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and Cianciaruso (2016); however, they were found to 
be functionally overdispersed in our study, showing 
that the seasonality of the forests in the Pantanal may 
create environmental conditions supporting different 
niches, e.g., allowing the coexistence of species from 
different guilds over the seasons. Many avian studies 
from Brazilian forests showed higher diversity of spe
cies in forests or habitats associated with forests as in 

veredas and cerradão (Tubelis & Cavalcanti 2000; 
Galina & Gimenes 2006; Tubelis 2009; Donatelli et al.  
2014)

In the forests, the FD indicated the random func
tional distribution of the bird community during the 
wet, dry, and rising seasons, as indicated by the equal 
numbers of areas with positive and negative values. 
The Cambarazal showed negative values in these 

Figure 3. Dendrogram of the bird species assemblage based on functional characteristics in forests and savannas during two annual 
cycles in the northeastern Pantanal, Mato Grosso, Brazil. The species were grouped by guild: 1 – nectarivore, 2 – piscivore, 3 – 
granivore, 4 – insectivore, 5 – frugivore, and 6 – omnivore. Species captured exclusively in savannas were marked with orange, 
exclusively in forests with green, and in both habitats with blue.

Figure 4. Boxplots of the functional richness of forests and savannas during four seasons in the northeastern Pantanal, Mato Grosso, 
Brazil.
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three seasons in FD and FR, suggesting the selection of 
bird functional traits by environmental filters in this 
type of vegetation. The environmental conditions and 
the supply of resources (e.g., fruits, insects, fishes) 
define the certain types of niches available, resulting 
in use by species with preadapted characteristics. In the 
nature the availability of these resources may vary 
according to climatic conditions and seasons, affecting 
the distribution and abundance of guilds of various 
taxonomic groups as arthropods, mammals, and birds 
(Janzen & Schoener 1968; Levey 1988; Develey & Peres  
2000; Post & Forchhammer 2002; Battirola et al. 2007,  
2010).

Therefore, avian species belonging to similar func
tional groups will not have accentuated differences in 
their trophic characteristics in the Cambarazal. In addi
tion, one of the forest areas in our study displayed few 
avian species across the seasons, and they were mainly 
insectivores and omnivores, while other forests con
tained additional groups (piscivores, nectarivores, and 
frugivores); these differences in the number of func
tional groups may have affected the functional distri
bution of the Pantanal bird community. In cases in 
which positive values were found for FD, the differ
ences in species functional traits are more pronounced, 
reflecting a bird community with niche differentiation 
(Mouchet et al. 2010). However, in our study, most 
species of each guild had similar morphological and 
body mass characteristics, and few species were large 
(total length) or had a high body mass. The species 
with these characteristics were clearly isolated at the 
extremes of the dendrogram (Figure 3).

Savannas

According to Sobral and Cianciaruso (2016), the nat
ural fires and long dry periods in the Cerrado savanna 
are environmental filters that select for generalist spe
cies adapted to the environment, constituting function
ally random communities. However, our study 
indicates that the avian community in the Pantanal 
savanna sites analyzed is functionally overdispersed in 
terms of FR and FD during the wet and receding 
seasons and functionally clustered during the dry and 
rising seasons. Even in some sites with a high number 
of species, negative values were found for FD, indicat
ing low functional diversity and also a possible redun
dancy between them. Therefore, the dry and rising 
seasons in the Pantanal favor species with similar func
tional characteristics.

We expected the flood period corresponding to the 
wet season in the Pantanal to have similar effects as 
other environmental factors, such as drought and fire 

in savannas, on the functional diversity. These envir
onmental impacts may limit resource availability for 
certain groups of species, generating negative values for 
functional diversity and consequently functionally clus
tered communities (Weiher & Keddy 1995). However, 
we found a functionally overdispersed bird community 
essentially dominated by Cerrado (savanna) bird spe
cies and affected by the annual floods each year. This 
finding suggests that functional traits can play an 
important role in this avian community and shows 
that flooding is not equivalent to fire and droughts in 
terms of its effects on functional diversity. According 
to the limiting similarity theory for coexisting species, 
niche differentiation is required by the different func
tional characteristics of the species (MacArthur 1958; 
MacArthur & Levins 1967; Weiher & Keddy 1995). In 
the Pantanal, we found a wide spectrum of niches and 
species supposedly competing with each other. 
Therefore, instead of limiting species with similar func
tional traits, there is a high diversity of species with 
similar characteristics occurring in this environment, 
mainly because they are generalist species adapted to 
the environmental changes triggered by floods and 
droughts.

Overview

One of the main drivers of the avian species distribu
tion across habitats and seasons in the Pantanal is the 
turnover pattern (De Deus et al. 2020). Thus, the 
fluctuation in bird species diversity across the seasons 
may also be responsible for the observed functional 
groups. These groups may remain stable over time, 
but the species composing these groups may change 
while maintaining the functional traits of the replaced 
species. Such replacement has been considered to be 
one of the factors responsible for changes in functional 
diversity (Srivastava & Vellend 2005; Mayfield et al.  
2010), and in fact, the changes in species diversity led 
by this replacement can also promote the stable diver
sity of functional groups (Fukami et al. 2005; De Bello 
et al. 2009). Therefore, turnover and competition serve 
as environmental filters as a response to resource avail
ability, affecting the occurrence and functional charac
teristics of the species (Silvertown 2004; Stubbs & 
Wilson 2004; Leclerc & DesGranges 2005; Mason 
et al. 2007). The presence of generalist species adapted 
to flooding and able to use food resources according to 
their availability allows the permanence and co- 
occurrence of the species in the Pantanal across sea
sons. In this study, the main functional differences in 
bird communities were related to habitat type. We 
observed a functionally overdispersed bird community 

STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 193



according to the FR across all seasons (96.6% of the 
areas) and according to the FD during the wet and 
receding seasons (86.6% of the areas). Therefore, the 
bird species in these communities may become estab
lished in the environment independent of their niche 
or functional characteristics. According to neutral the
ory through dispersion, species have the same chances 
of establishing themselves in an environment 
(MacArthur 1963; MacArthur & Wilson 1967), and 
environmental conditions do not necessarily structure 
the functional groups in the community (Hubbel 2001; 
Jung et al. 2010; Cianciaruso et al. 2012). For the dry 
and rising seasons, a functionally clustered bird com
munity was observed in regard to the FD when all 
habitats were considered together. Most of the areas 
displayed negative values (86.6%), with such values 
predominating in the areas with high numbers of spe
cies. The functional traits varied less than expected 
according to the richness among the functional attri
butes observed in these sites, indicating possible func
tional redundancy in these communities, which is 
a novel finding for the Pantanal wetlands. Species 
with a similar function could replace the roles of others 
in the case of species loss (Walker 1992, 1995; Lawton 
& Brown 1993), and for the Pantanal, we observed the 
high replacement of species across seasons and habi
tats, but the functional groups remained the same.

Conclusions

In our Pantanal avian community study, we observed 
that even the niches, the competition, and the dispersal 
ability of the species can strongly affect the functional 
structure of these communities. The generalist species of 
the Pantanal and their dispersal ability were the main 
determinants to explain the functional structure in this 
study. Therefore, the structure of the habitats, the envir
onmental conditions, and the evolutionary history of the 
species are important in regard to the definition of 
functional groups, indicating that different patterns of 
bird functional community composition may be 
observed when comparing different seasons and habitats 
of different ecosystems. The seasonality affected the 
guild trophic structure, species richness, abundance 
and distribution of the species over the seasons in 
Pantanal. Functionally overdispersed bird communities 
predominate over the seasons to most part of the areas of 
forest and savanna in the Pantanal. Two patterns of 
functional divergence were found: bird communities 
functionally overdispersed during wet and receding, 
and functionally clustered during dry and rising season. 
Studies considering environmental changes over time 
provide important information about ecosystem 

functioning and the distribution of species under adverse 
conditions and environmental impacts (Magurran & 
Dornelas 2010; Mouillot et al. 2012).
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