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Traditional human-observer-based biological surveys are expensive. Therefore most biodiversity studies
are implemented only periodically, for short periods, and predominantly during daytime and under
favorable weather conditions. Automated data acquisition and analysis can overcome these shortcomings
and facilitate continuous monitoring. Here we report on the development of an automated acoustic rec-
ognizer for Southern Lapwing Vanellus chilensis lampronotus vocalizations, a first for this species. The rec-
ognizer is a species-specific information retrieval agent, which searches throughout long audio
recordings in order to detect and timestamp call events of the target species. The recognizer relies on
a log-likelihood ratio estimator, based on a Gaussian Mixture Model-Universal Background Model
(GMM-UBM), complemented with purposely-developed temporal post-processing that incorporates
domain knowledge about the structure of V. chilensis vocalizations. Validation experiments with real-field
recordings of complex soundscapes indicate that the recognizer is sensitive enough to register V. chilensis
call events with sound levels down to —30 dB and recognition accuracy of up to 85.6%, at zero false pos-
itive rates. The recognizer is considered a valuable tool for computer-assisted analysis of hourly and daily
acoustic activity of V. chilensis over extended periods of time, as it offers an indispensable support to long-
term monitoring studies and conservation efforts in the Pantanal region.'

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction difficulty in acquiring such information is that classical survey

methods require the long-term involvement of well-trained obser-

Birds tend to integrate a wide spectrum of ecological factors and
are the best-known indicator group for the conservation and man-
agement of natural resources in tropical ecosystems, including
wetlands (Stotz, Fitzpatrick, Parker, III, & Moskovits, 1996;
Wetlands International, 2010). At the same time, crucial informa-
tion about the life history and ecology of many tropical wetland
birds is lacking, particularly with respect to their response to fluc-
tuating water levels and availability of food resources. The main
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vers, which is expensive and often logistically prohibitive. Thus,
biologists who study the consequences of human activity on cer-
tain bird populations would greatly benefit from non-intrusive
and cost-effective automated monitoring tools.

Recent technological developments, related to automated infor-
mation retrieval from audio, have focused on the elaboration of
methods in support of biological studies on the presence/absence
and activity patterns of rare, threatened, or elusive species
(Bardeli et al., 2010; Frommolt & Tauchert, 2014; Henriquez
et al., 2014; Huang, Yang, Yang, & Chen, 2009; Potamitis,
Ntalampiras, Jahn, & Riede, 2014) and tools in support of the
non-intrusive and cost-effective assessment of biodiversity (Aide
et al.,, 2013; Briggs et al., 2012; Digby, Towsey, Bell, & Teal, 2013;
Stowell & Plumbley, 2014; Sueur, Pavoine, Hamerlynck, & Duvail,
2008).

Specifically Huang et al. (2009) presented an automated tool for
the identification of five anuran species. Their approach relies on
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the algorithm of Hirmad (2003) to automatically segment the audio
into syllables. Subsequently syllables are then classified. In the
experimental validation of their approach, Huang et al. (2009) per-
formed closed-set classification of preselected files, which were
assumed to contain sounds of a single species. In that sense,
Huang et al. (2009) did not investigate the potential of their
method with respect to timestamp determination of individual syl-
lables or series of syllables. Classification accuracy ranged between
82% and 100% for the different species, depending on the classifier
used.

Henriquez et al. (2014) studied a semi-automatic system for bat
classification. For that purpose they built multiple GMM models for
each species and then classified some manually selected audio
files, each containing sound emissions of a single bat species.
Species-level classification accuracy of 92-99.9% was reported.

Potamitis et al. (2014) developed HMM-based recognizers and
investigated the automated detection of American Robin Turdus
migratorius and Common Kingfisher Alcedo atthis. On the song-level
detection task they reported 85.1% precision for the former and
84.9% for the latter species. Determination of timestamps of acous-
tic events and their use for estimating activity patterns of the tar-
get species was not discussed in their work.

Frommolt and Tauchert (2014) created a system for semiauto-
matic recognition of the nocturnal activity of Eurasian Bittern
Botaurus stellaris. Data acquisition was performed with four omni-
directional microphones. The system functionality included detect-
ing the direction of the sound source, estimating the number of
calling animals, identification of the bird species, and determina-
tion of the timestamps. The system made use of continuous record-
ings, acquired only during windless nights. Averaged diagrams of
the hourly acoustic activity of the target species were presented
for the five-year period 2008-2012. Recognition accuracy of
84.9% was reported at nearly zero false acceptance rates.

A comparison of various machine learning approaches for the
classification of bird and amphibian calls was provided by
Acevedo, Corrada-Bravo, Corrada-Bravo, Villanueva-Rivera, and
Aide (2009) and Henriquez et al. (2014); while Stowell and
Plumbley (2010) presented a comprehensive review of methods.

In the present contribution we focus on the development of an
automated acoustic recognizer for the Southern Lapwing Vanellus
chilensis, since we consider it an indicator of certain processes in
the Pantanal ecosystem, such as the annual flood-drought cycle.
The Pantanal wetlands are increasingly affected by climate change
as well as the construction of hydroelectric dams, gold mining
activities, erosion, and the use of agrochemicals in Brazil’s
Cerrado region (Brendle, 2003; Junk & da Cunha, 2005). An under-
standing of the ongoing environmental changes requires careful
monitoring of multiple factors, such as the status of certain animal
populations, water levels, contaminant concentrations, and cli-
matic data.

Here we regard the resident V. chilensis as a model for other
wetland birds and for migratory species, as the lapwing forms
noisy flocks and carries out local movements in reaction to the
extensive flooding of its breeding habitats during several months
of the year. Our principal aim is to study the potential benefits of
automated detection of V. chilensis acoustic activity, without the
presence of human observers in the field. We anticipate that such
a technological tool would facilitate the long-term monitoring of V.
chilensis and provide insights into the biology, ecology, and behav-
ior of this species.

To that end we propose a method for the automated recognition
of V. chilensis sound events (single-note calls and call series), which
also estimates the start and end timestamps of each call event. This
method is based on the statistical modeling of the acoustic back-
ground and the target species making use of the Gaussian
Mixture Model-Universal Background Model (GMM-UBM)

approach. This method was originally developed for the needs of
speaker verification (Reynolds, Quatieri, & Dunn, 2000), where
decisions are made at the level of complete sentences or entire
files. Here we make use of a log-likelihood ratio estimator based
on the GMM-UBM approach to search continuous audio recordings
for the presence of V. chilensis sounds. The output scores of the log-
likelihood ratio estimator are post-processed with a purposely-
developed temporal smoothing algorithm that incorporates
domain knowledge about the structure and duration of V. chilensis
call events. The latter allows detection of single-note call events
and call series as well as the determination of the corresponding
timestamps.

In Section 2 we provide a short account of the variety of V.
chilensis vocalizations and present a comprehensive description
of the proposed method and the technological framework on
which the acoustic event recognizer is built. There we also describe
the datasets and define the experimental protocol used in our
work. The performance assessment results of the V. chilensis recog-
nizer are discussed in Section 3. The evaluation is carried out on
recordings of complex soundscapes collected at one of our moni-
toring stations in the northern part of the Brazilian Pantanal.
Making use of the estimated start and end times of each call event,
we present diagrams of the hourly and daily acoustic activity of V.
chilensis over a complete month of continuous recordings made in
24/7 mode. In Section 4 we discuss the innovative aspects of the
present work, clarify the current limitations of the V. chilensis rec-
ognizer, and point out the future research directions. Finally, in
Section 5 we make concluding remarks about the scope and the
importance of our work.

2. Materials and methods

In this section we consequently outline the audio datasets used
in the present study (Section 2.1), provide a description of the
overall architecture and building blocks of the proposed Vanellus
chilensis recognizer (Section 2.2), and specify the experimental pro-
tocol used in the technology evaluation tests (Section 2.3).

2.1. Materials

We first specify the origin of audio recordings used in our study
(Sections 2.1.1 and 2.1.2), then describe the data splits employed
for the purpose of technology development and evaluation
(Section 2.1.3), and finally outline the acoustic characteristics of
V. chilensis vocalizations (Section 2.1.4).

2.1.1. Study area

The study was carried out in agricultural, natural, and semi-
natural habitats of the northern Pantanal region, municipality of
Poconé, Mato Grosso, Brazil. The audio recordings analyzed here
were collected with Song Meter SM2 +recorders (Wildlife
Acoustics?) in the areas of Fazenda Pouso Alegre (—16.50303S,
—56.74533 W; 115-126 m a.s.l.; c. 110 km?; recording period Jul.
2012 through Oct. 2013) and SESC Pantanal Private Natural
Heritage Reserve (—16.49879S, —-56.41309W; 119-131m a.s.l;
878.7 km?; recording period Nov. 2013 until to date). These activi-
ties were carried out by the Computational Bioacoustics Research
Unit®> within the scope of the INAU 3.14 Project “Monitoring
Bioindicators and Migratory Birds in the Pantanal” of the National
Institute for Science and Technology in Wetlands,* aiming at the
promotion of Applied Acoustomics as a tool for bio-sustainability
assessment (Schuchmann, Marques, Jahn, Ganchev, & de

2 wildlife Acoustics: www.wildlifeacoustics.com
3 CO.BRA: www.ic.ufmt.br/cobra
4 INAU: www.inau.org.br
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Figueiredo, 2014). The overall goals of the project are to establish
and calibrate an automated remote monitoring system for bio-indi-
cators of various sound-producing animal species.

2.1.2. The target species

The bird species Southern Lapwing Vanellus chilensis (Molina,
1782) is of strictly Neotropical occurrence. It is distributed from
Panama south to Tierra del Fuego, Argentina and is present in all
countries of South America (Marchant, Prater, & Hayman, 1986;
Wiersma, 1996; Ridgely & Gwynne, 1992). One vagrant was
recorded north to Campeche, Mexico (Martin, 1997). Four sub-
species of V. chilensis are usually recognized (Wiersma, 1996;
Santos, 2010). However, differences in morphology and vocaliza-
tions suggest that two valid species might be involved, with nom-
inate race chilensis and closely related fretensis restricted to
southern South America, and a separation of cayennensis, incorpo-
rating lampronotus, which are distributed from northern Argentina
north to Panama (cf. Internet Bird Collection., 2014). The resident
subspecies of Southern Lapwing in our central Brazilian study area
is V. c¢. lampronotus (Wagler, 1827).

V. chilensis belongs to the avian Order Charadriiformes, which
consists of 17 families and 385 recognized species (Gill &
Donsker, 2014). In the northern Pantanal this ground-dwelling
lapwing is common in open and semi-open habitats, such as
savannah grasslands, pastures, and muddy lake margins but vir-
tually absent from forests and dense scrublands. It is vocal during
all months of the year, active during day and night, and gregari-
ous outside the breeding season (Marchant et al, 1986;
Maruyama, Cunha, Tizo-Pedroso, & Del-Claro, 2010). Extensive
areas of the Pantanal are flooded at the height of the rainy season
for several months of the year (Junk, da Silva, da Cunha, &
Wantzen, 2011). Our study area is inundated mostly between
January and March; however in 2013, when the study at
Fazenda Pouso Alegre took place, some recording stations were
flooded until the beginning of June. When the water level rises
V. chilensis is forced to perform short-distance movements as it
abandons its inundated breeding areas and gathers in appropriate
terra firma habitats. This behavior nicely emulates the seasonal
movements of migratory species.

2.1.3. Dataset description®

Between July 2012 and October 2014 we implemented contin-
uous monitoring in 24/7 mode and collected about 90 TB of audio
recordings (files with duration of 14, 15, and 30 minutes, sampling
rate 48 kHz, resolution 16 bits), including one complete annual
cycle each at Fazenda Pouso Alegre and SESC Pantanal Private
Natural Heritage Reserve. From these recordings we extracted sev-
eral excerpts which served for technology development and evalu-
ation as follows:

2.1.3.1. Acoustic background model training dataset. For the creation
of a balanced acoustic background model we combined two data-
sets of audio recordings, representative of the Pantanal sound-
scapes. The first consists of fifty-four 14-minute recordings of the
Fazenda Pouso Alegre with a total duration of over 12 hours. The
original recordings were manually edited to remove over 150
(mostly weak) call series of the target species (V. chilensis). The sec-
ond dataset consists of thirty-two 30-minute recordings made at
SESC Pantanal, corresponding to approximately 15 h of continuous
recordings from a sound recording station located inside forest.
Since the latter habitat is avoided by the target species, the

5 According to the principles of reproducible research, we will provide all datasets
described here through the website of the Computational Bioacoustics Research Unit
(CO.BRA; www.ic.ufmt.br/cobra) of the Federal University of Mato Grosso (UFMT).

recordings from that station were regarded as V. chilensis free,
although occasionally some vocalizing lapwings may have flown
over the site. In this way, approximately 27 h of audio recordings
from the Pantanal were available for training the acoustic back-
ground model.

2.1.3.2. Vanellus chilensis training dataset. From about 4500 manu-
ally selected snippets of animal sounds we built a reference library
of 258 recordings with V. chilensis vocalizations. These recordings
are excerpts of the original 14, 15 or 30 minute audio recordings
and were neither edited nor filtered. Most recordings contained
competing sounds of other sources, such as vocalizations of non-
target species, anthropogenic noise, and wind. For the training
dataset we selected representative recordings from the reference
library and subsequently removed non-target signals by manual
editing and selective filtering. The final training dataset consisted
of 93 recordings, containing ~45 min of target sounds. Among
these are 38 recordings virtually clean of competing interference
(~18 min), 52 recordings that still contain some other competitive
low-volume background sounds overlapping with the target sig-
nals (~24 min), and 3 recordings representing choruses of lapwing
flocks (~2 min). We aimed to include examples of a wide spectrum
of V. chilensis call types but for some rarer call variants we found
few examples in the reference library.

2.1.3.3. Vanellus chilensis validation dataset. The original audio
recordings are often very noisy due to wind, rain, competing sound
signals of other species, and interferences from other sources.
Furthermore, some calls of the target species may be so faint that
they are barely identifiable, even for a bird sound expert. To
address the challenges related to manual tagging of real-field
recordings we took the following approach:

(a) We compiled a few dozen soundscapes that were known to
contain at least one good call series of V. chilensis. By select-
ing recordings that were not previously processed during the
manual snippet selection we made sure that there was no
overlap between the audio signals used for recognizer train-
ing and evaluation.

(b) We randomly chose a subset of these audio files in order to
annotate the timestamps of V. chilensis call events (single-
note call or a sequence of calls).

(c) Only for the purpose of tagging we made use of a graphic
equalizer to reduce competing noises such as wind and
insects by —48 dB in the frequency ranges [0, 630] Hz and
[12.5, 24]kHz. In stronger target signals the lowest
and some of the upper harmonics were removed involuntar-
ily during this procedure. However the V. chilensis recognizer
directly processes the original audio as described in Sections
2.2.1 and 2.2.2.

(d) The filtered recordings were screened by a bird-sound
expert using a headset with integrated manual volume con-
trol but without additional software amplification, and
simultaneously through visual inspection of the spectro-
grams in Adobe Audition.

(e) The bird-sound expert tagged the start and end times of each
acoustic event; however, the number of calls per vocaliza-
tion event was not counted.

(f) The following rules were applied to separate call events:

(1) A pause of at least one second between target signals
was used to separate call events of similar sound pres-
sure levels.

(2) Abrupt changes in sound pressure levels were used to
separate different call series even if there was no pause
between the signals;
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(3) However, call sequences that varied greatly in sound
pressure levels over time were not divided into different
call series when the calling birds seemed to continuously
move (fly) around the recording stations.

(g) In addition, we noted the compound dB-values of the loud-
est call of each vocalization event; that is, the volume of
the target signal plus the volume of the remaining back-
ground noise. In most cases this approach led to a consider-
able overestimation of the dB-values for weaker target
signals below about —35 dB. These levels depend on the
proximity and orientation of the sound source to the
microphone.

(h) The manual annotation of the timestamps was repeated
twice. Depending on the complexity of the soundscape, the
time effort per 14-minute sound file was between about 4
and 16 h.

(i) Some audio signals could not be identified with certainty
as target or non-target, either because they were too faint
or because background noise levels were too high. Such call
series were time-stamped and excluded from analysis; for
dataset (I) these were N =70 and for dataset (II) N=137.

The aforementioned procedure led to two datasets consisting of
14-min original soundscapes containing vocalizations of the target
species:

(I) four recordings with a total of 80 V. chilensis call events for
the purpose of technology optimization and adjustment of
the parameters of the recognizer, hereafter referred to as
dataset VLO1, and

(II) ten recordings with a total of 337 V. chilensis call events to
evaluate the performance of the recognizer, hereafter
referred to as dataset VLO2.

0

2.1.4. Acoustic characteristics of V. chilensis lampronotus vocalizations

V. chilensis lampronotus vocalizes from the ground and in flight,
particularly during courtship and territory displays as well as in
response to the presence of potential predators. The most often
heard vocalization is a strident “keh-keh-keh-keh-keh...” that is
consistently repeated by alarmed birds (Gwynne, Ridgely, Tudor,
& Argel, 2010, p. 99). On occasions the lapwings give emphatic vir-
tually double-note “keh-a, keh-a, keh-a, keh-a, keh-a...” vocaliza-
tions or similar variants of the call (Fig. 1, Table 1). Vocalizations
of perched birds are often rather short, sometimes consisting of
only one or few notes. During the non-breeding season, flocks of
a few to several dozen birds congregate and often vocalize in
choruses.

The spectral structure of single call notes is quite complex, con-
sisting of multiple harmonics with most of the energy concentrated
in the frequency range [1.1, 10] kHz (Fig. 1). The specific peak fre-
quencies of individual call notes seem to depend on the agitation
level of the birds (Table 1). In addition, some weak spectral details
are available for frequencies below 1 kHz and above 10 kHz, so har-
monics may spread over the entire audible frequency range above
550 Hz in recordings made close to the birds (Fig. 1g and h).
However, since the energy of these details is weak they are usually
buried in the ambient noise, and thus do not offer reliable cues for
the acoustic detection of V. chilensis in real-field recordings.

2.2. The Vanellus chilensis recognizer

The overall architecture of the V. chilensis acoustic recognizer is
presented in Fig. 2. Two main processing stages are defined: audio
parameterization (details in Section 2.2.1) and pattern recognition
(details in Sections 2.2.2 and 2.2.3). Firstly, the audio signal is pre-
processed and then audio descriptors are computed and standard-
ized to facilitate the pattern recognition process. Secondly, a

kHz

Fig. 1. Examples of Vanellus chilensis lampronotus vocalizations from the northern Pantanal, Brazil. Shown are 1.5-second segments of unedited and unfiltered reference

recordings sampled at 48 kHz (cf. Table 1 and Appendix A for further details).
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Table 1

Characterization of Vanellus chilensis lampronotus vocalizations from the northern Pantanal, Brazil (cf. Fig. 1 and Appendix A). The column “N calls” refers to the number of calls
considered for analysis. The association between vocalizations and behavioral contexts was not previously studied by our project.

Spectrogram Signals/s Call duration Peak N Sound description Observations
(s) frequency calls
(Hz)

a 4.6 0.123-0.129 2400 50  Fast Accipiter-like series of keh-keh-keh-keh-keh calls  Single perched bird; mate vocalizes shortly
thereafter; recorded during night at 02:15 h

b 43 0.098-0.135 3400 11 Fast series of keh-keh-keh-keh-keh calls Chorus of at least four agitated birds in flight; at
dawn (05:45 h)

c 5.9 0.107-0.116 6000 17  Fast and high-pitched series of kre-kre-kre-kre-kre calls Single agitated and perched bird in response to a
short call series of a conspecific individual

6.3 0.112-0.136  3000/4000 9 Fast series of rail-like kreh-kreh-krek-kreh-kreh calls Two agitated birds at dusk

e 1.9 0.240-0.260 2800 5 Slow series of keeh, keeh, keeh, keeh, keeh calls Single bird; second bird vocalizes shortly
thereafter; recorded during night at 01:30 h

f 2.0 0.241-0.273 2300 23 Slow series of emphatic virtually double-note keh-a,  Single perched bird; mate vocalizes shortly before

keh-a, keh-a, keh-a, keh-a calls and after; recorded during night at 02:30 h

g 2.0 0.192-0.235 3800 7 Emphatic keeh-keeh-keeh-keeh-kwo calls Flight calls of a single bird; a second bird vocalizes
shortly before and after

h 2.5 0.218-0.264 2400 10  Emphatic kweh-kweh-kweh-kweh-kweh calls Flight calls of a single bird; the mate and other
conspecific birds vocalize shortly before and after

. , Post- : Y. CUISHAG Rost: Time-stamps
. Signal Computing | Acoustic model processing
—A“d!o pre- audio Prochns il activity Score and D.f "
[scordings processing descriptors dOf L detector computation decision Ko ehiton e
escriptors Acoustc making songs
background
model
; Threshold
Data repository Audio parameterization Pattern recognition

Fig. 2. Overall block diagram of the Vanellus chilensis recognizer.

detector is used for selecting those parts of the audio recording
where acoustic activity occurs and for labeling the signals for fur-
ther processing. The pattern recognition stage evaluates the degree
of proximity between the audio feature vectors and the V. chilensis
model and the acoustic background model. The resultant scores are
post-processed and subsequently serve as the basis for decision
making about the presence or absence of V. chilensis vocalizations
in the specific portion of audio. The final recognizer output consists
of timestamps that specify the start and end times of each V. chilen-
sis call event.

2.2.1. Audio parameterization

The audio parameterization converts the acoustic signal into a
series of low-dimensional feature vectors, each representing a
short segment of the acoustic signal. The block diagram, shown
in Fig. 3, summarizes the audio parameterization steps.

The first step, denoted as pre-filtering of the input signal s(n),
consist of mean value removal, band-pass filtering, and down-sam-
pling of the signal to 24 kHz in order to reduce the computational
demands during the subsequent processing steps. Band-pass filter-
ing with Butterworth filter of order 10 is seen as a simple but
adequate noise reduction step, which aims at improving the sig-
nal-to-noise ratio (SNR) before parameterization. It preserves the
frequency range of 800 Hz to 11 kHz, where most of the energy
of V. chilensis vocalizations is located and reduces the influence
of additive low-frequency interferences (for instance due to wind
blowing in the microphone or to mechanical vibrations provoked
by wind). Except for the attenuation of the dc-offset and
low-frequency interferences, the band-pass filtering also reduces
the contribution of the high-frequency components that might
occur in clipped signals.

The second processing step, signal segmentation, is based on
the assumption that the spectral characteristics of the audio sig-
nal do not change significantly within short periods of time. In
the process of segmentation, we apply a sliding window function
with 20 ms in length to the band-limited audio signal. At a sam-
pling frequency of 24 kHz this leads to the creation of audio seg-
ments with length N=480 samples. Subsequent segments are
overlapped by 75%, i.e., the time step of audio parameterization
is 5 ms. The pre-processed signal is subject to parameterization
as follows:

Each audio segment, consisting of N samples of the pre-pro-
cessed signal, is subject to the short-time discrete Fourier
transform:

N-1 . .
Sitk) =S s(i+1)- W(i) - exp (-121’\3”‘
i=0

)., 0<i, k<N-1, (1)
1

where i is the index of the time domain samples, k is the index of
the Fourier coefficients, and I denotes the relative displacement of
the current segment. Since the following steps apply to every seg-
ment, in the rest of this article we omit the subscript [ but it remains
implied. The Hamming window

W(m) = 0.54 — 0.46 cos (MT'"> m=01,...

is applied to reduce the spectral distortions caused by an abrupt
change of signal amplitude at the boundary points of the audio
segment.

We cover the frequency range [1, 11] kHz with the filter bank
H;(k), consisting of B= 100 equal-bandwidth and equal-height
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Fig. 3. Block diagram of the audio parameterization process.

filters on the logarithmically compressed power spectrum. Each fil-
ter is defined as:

0 for k< fp
k—fp,
ik tor g, <k,

bl
(fbi\ 1 7")
AU for fy <k <y,
(fbm 7fbi>

0 for

k>fb.

i+1

where i =1,2,...B stands for the i th filter, f, are the boundary
points of the filters, and k = 1,2,...N corresponds to the k th coef-
ficient of the N-point discrete Fourier transform (DFT). The bound-
ary points f,, are expressed in terms of position, which depends on
the sampling frequency F; and the number of points N in the DFT.
The center of the first filter is at 1 kHz and the centers of the subse-
quent filters are linearly displaced at 100 Hz and serve as boundary
points for the neighboring filters. We have chosen linear spacing
(equal frequency resolution) because V. chilensis produces wide-
band sounds which are spread over the entire frequency range [1,
11] kHz.

Next, we perform decorrelation of the log-energy filter-bank
outputs S;, where

N-1
S; = logyo (ZS(k)z : H,~(k)> ,
k=0

via the discrete cosine transform (DCT):

(4)

T

B
xj:;Sicos(j(i—O.S)B), j=0,1,...D. (5)

In (5) j is the index of the linear frequency cepstral coefficients
(LFCC), and D is the total number of LFCC that are computed, where
D < B. In the present work D = 35, as these represent over 90% of the
signal energy.

Since the above analysis applies to every audio segment, the
output of the signal parameterization stage is a sequence of LFCC
vectors. We use X, to represent a sequence of LFCC vectors
extracted from the original audio signal. In the general case, X
is a sequence of T D-dimensional LFCC vectors, Xy = {xf}fjl, where
X; = {x;}|, is the vector at time instance t, and T is the total number
of vectors.

Subsequently, post-processing of the LFCC is carried out in order
to reduce the negative consequences of time-varying acoustic con-
ditions and to exclude from further processing the non-promising
regions of the audio. For this purpose we first perform statistical
standardization of the LFCC, i.e., Xy is normalized to zero mean
value and unit standard deviation. This results in obtaining the z-
score X; of each individual parameter x; of the LFCC vector:
j=0,1,...D. (6)
The z-scores, computed from the LFCC, quantify the distance from
the mean in terms of the standard deviation. The mean value v;
and the standard deviation ¢; are estimated on a per file basis for
each of the D dimensions.



6104 T.D. Ganchev et al./Expert Systems with Applications 42 (2015) 6098-6111

Furthermore we make use of an energy-based acoustic activity
detector to prune the sequence of audio feature vectors X,; and
exclude from further processing the audio feature vectors
X; = {X;}|, corresponding to low-energy frames. The former step
helps to remove silence from the training data and to speed up
computations in the V. chilensis recognizer. Our acoustic activity
detector is based on modeling the log-energy distribution on a
per file basis with a three-component Gaussian Mixture Model
(GMM):

3
_ 1
Xo; W, [1,0) =Y Wi ex
P(Xori W, 1,0) ‘on/21

i=1

p{ - g G- Goe=p) | ()

where w; are the mixture weights, ; are the means, and ¢? are the
variances of the individual components. These parameters are esti-
mated from the sequence of z-scores xq;, computed after applying
(6) for the Oth LFCC x, (5). From (5) we can see that x, is propor-
tional to the full-band log energy computed for each audio frame.

The maximum likelihood model parameters of the GMM are
estimated using the iterative expectation-maximization (EM)
algorithm.

In order to identify the silent audio portions, we interpret the
individual components of the three-component GMM as follows:

e The mixture component with the lowest mean value y, corre-
sponds to portions of audio with the lowest energy, and we
therefore label these as silence/background noise, which is
excluded from further processing.

The mixture component with the highest mean value p; corre-
sponds to portions of audio with significant acoustic activity
and therefore we label these as acoustic events kept for further
processing.

Finally, the mixture component with the middle mean value u,
corresponds to weak signals originating from low-energy
sources or sound sources located at a significant distance from
the microphone. We keep only the upper P percents of the mid-
dle component.

As a result, the acoustic activity detector acts as a gateway
which labels for further processing sequences of audio feature vec-
tors X, C {X:}|p, each corresponding to an acoustic event with
energy in the range specified by the upper P percent of the middle
Gaussian component (with mean p,) and the third one with mean
1. In the present work we consider P = 15% for the training dataset
and P=75% for the tests datasets as we aim at recognizing V.
chilensis vocalizations at audio levels down to —30 dB. In the fol-
lowing we process each sequence X. independently from the
others. For simplicity of notations we drop the subscript e but it
remains implied.

2.2.2. GMM-UBM-based bird species detection

The V. chilensis recognizer follows the GMM-UBM likelihood
test approach, introduced by Reynolds et al. (2000) on the speaker
verification task. In brief, given a sequence of audio feature vectors
X, computed for a sequence of audio frames and the hypothesized
bird species S, the task of automated bird species detection consists
in determining whether X originates from the target species S.
From this perspective, the task consists in testing the following
two hypotheses:

Hy: X originates from the hypothesized bird species S,
Hy: X does NOT originate from the hypothesized bird species S.

Given a sequence of audio feature vectors X, and given a mech-
anism for the reliable estimation of likelihoods of the hypotheses

Hy and Hy, we can apply the optimum test (8) and decide between
these two hypotheses:

Likelihood ratio test Comparison with threshold and decision (8)
p(X|Ho) > 0 accept Hy, (Decision: X
p(X|Hq) originates from the bird species S),

< 0 reject Hy, (Decision: X does NOT
originate from the bird species S).

Here p(X|Ho) and p(X|H;) are the probability density functions for
the hypotheses Hy and H;, which are evaluated for the sequence
of audio feature vectors X , computed for the observed audio seg-
ment. The decision threshold 0 for accepting or rejecting Hy needs
to be estimated on the basis of a representative development
dataset.

In practice, Hy is represented with the mathematical model 7y,
which characterizes the hypothesized species S in the audio feature
space. Likewise /— represents the alternative hypothesis H;. Thus

hyp
the likelihood ratio (8) can be rewritten as
P(X|Znyp)
. 9
P Xligy) ®)

Furthermore, the logarithm of (9) gives representation of the log-
likelihood ratio as:

A(X) = log [p(X|uy,)] — log [p(Xig;)]. (10)

The model /4y, for Hy is well defined and can be estimated using the
training dataset for the target bird species S. However the model
i for H; is not well specified as it has to represent all possible

alternatives to the hypothesized target species.
Given a collection of audio recordings from a large number of
species that are representative of the community of sound-emit-

ting species observed in the habitat, a single model Aygy ~ im is
build to represent the alternative hypothesis. It is also possible to
use multiple background models tailored to specific sets of species
or habitats, but the use of a single background model has advan-
tages in terms of computational efficiency.

An important step in the implementation of the likelihood ratio
test is the selection of the actual likelihood function p(X;|4). The
choice of this function depends on the audio features being used,
as well as on the specifics of the application. The mixture density
used for the likelihood function is defined as follows:

M
PXel2) =Y wipi(Xo). (11)
i=1

The mixture density is a weighted linear combination of M uni-
modal Gaussian densities p;(X;), each parameterized by a D x 1
mean vector g; and a D x D covariance matrix X;. The mixture

weights w; satisfy the constraint >, w; = 1. Here p;(X,) are defined
as:

_ 1 1, ’ -1 ,_
pi(X) = 22z €xp {_j (e —p) D (- ﬂi)}- (12)

While the general form of the model supports full covariance
matrices, typically only diagonal covariance matrices are used in
order to reduce the number of adjustable parameters.
Collectively, the parameters of the density model are denoted as
i=A{wi, m, 0}, i=1,2,..M.

Given a training dataset of audio feature vectors, maximum
likelihood model parameters can be estimated using the iterative
expectation-maximization (EM) algorithm. The EM algorithm iter-
atively refines the GMM parameters to monotonically increase the
likelihood of the estimated model for the observed feature vectors.
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Under the assumption of independent feature vectors, the log-like-
lihood of a model 4 for a sequence of T audio feature vectors is
computed as:

T
L) = 1> log [p(Rl)]. (13)
t=1

In the present work we compute (13) for a sliding sequence of
T = 3 vectors, as this allows the achieving of good time resolution
in the identification of start and end timestamps for each V. chilen-
sis vocalization.

Aiming at computational efficiency, we made use of a single
background model to represent p XlAzp)- Using a GMM as the like-

lihood function, the background model /iygy is typically imple-
mented as a large GMM trained to uniformly represent the
distribution of audio features for the specific acoustic environment.
Specifically, the background dataset was selected in such a way as
to reflect the expected acoustic environment encountered during
the operation of the V. chilensis recognizer.

The model 4, for the target species S is obtained as adapted
GMM, derived by adjusting the parameters of the background
model Aygy Vvia maximum a posteriori (MAP) estimation
(Reynolds et al., 2000), using the training dataset for S. Since the
dataset representing the target species is usually quite small, the
MAP adaption only updates the mean vectors of the model.
Because the target species model 7, is created by updating the
parameters in the background model Aygy, there is a close associa-
tion between the corresponding mixture components of the two
models. The last facilitates the discriminative capability of the spe-
cies-specific recognizer.

The decorrelation stage as described by (5) permits the use of
diagonal covariance mixture density GMMs that have fewer free
variables in their covariance matrices to estimate and, therefore,
are better trained to represent the target classes when limited
training data are available (Reynolds et al., 2000).

Computing the log-likelihood ratio (LLR) (10) for a sequence of
audio feature vectors X requires estimation of the likelihood twice:
for the target species model and for the background model. This is

Feature vectors of z-scores

!

repeated for each audio feature vector in X and is computationally
expensive for models with large number of mixtures. However the
fact that the hypothesized species model A, was adapted from the
background model Aygy allows the use of fast scoring methods
(Reynolds et al., 2000; Saeidi, Sadegh Mohammadi, Ganchev, &
Rodman, 2009). Since the components of the adapted GMM retain
a correspondence with the mixtures of the background model, the
acoustic feature vectors close to a particular mixture in the back-
ground model will also be close to the corresponding mixture in
the target bird model. For that reason, instead of scoring all mix-
tures of the background model and the target model for each audio
feature vector, we determine the top-C scoring mixtures in the
background model and compute the background model likelihood
using only these top-C mixtures (Reynolds et al., 2000). Next, we
only score the audio feature vector against the corresponding
C=10 components in the adapted target species model to evaluate
the likelihood. For a background model with M mixtures, this
requires only M+ C computations per feature vector compared
with 2M computations for the case of exhaustive likelihood ratio
evaluation. In the present work we made use of the ALIZE imple-
mentation of the GMM-UBM (Benoit et al., 2007).

2.2.3. Score post-processing and decision making

Decisions computed via the likelihood ratio test are post-
processed in order to estimate the sound event boundaries, that
is the start and end timestamps of V. chilensis sound emissions,
viz. isolated single-note call events and entire call series. Because
in our study on the seasonal activity patterns of V. chilensis any
split of call series into single-note calls or fragments composed of
several calls is undesirable, we made use of a sequence of post-
processing steps (Fig. 4).

The post-processing aims to merge together segments belong-
ing to an isolated single-note call or to a call series emitted by sin-
gle birds, pairs, or groups of V. chilensis. At each of these steps the
algorithm operates on different time scales and applies certain
domain knowledge about the structure of V. chilensis vocalizations
(cf. Table 1). Such domain knowledge is related to the structure of
V. chilensis vocalizations and the parameters minimum, maximum,

!
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Fig. 4. Post-processing of the output of the log-likelihood ratio estimator.
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Table 2

Domain knowledge used in the post-processing algorithm about the structure of
isolated single-note call events and call series, by single birds, pairs, and groups of
Vanellus chilensis.

Duration
[seconds]
Isolated single-note calls
Minimum duration 0.10
Maximum duration 0.30
Estimated medium duration 0.15
Arbitrarily chosen minimum duration of pauses between distinct >1.0
call events
Call series of a single bird
Minimum duration of pauses between call notes 0.05
Defined maximum duration of pauses between call notes, 0.99
pertaining to the same call series
Choruses
Minimum duration of overlapping call notes 0.10
Maximum duration of overlapping call notes 0.60
Estimated medium duration of overlapping call notes 0.30
Minimum duration of pauses between subsequent overlapping 0.01
call notes
Defined maximum duration of pauses between subsequent 0.99

overlapping call notes

and estimated medium duration of isolated call events as well as
the duration of pauses between subsequent calls in call series of
a single bird and in choruses (Table 2).

Admittedly, at this stage of development we made no effort to
build a recognizer that can distinguish between call series/cho-
ruses emitted by single birds, pairs, or groups of V. chilensis.
Likewise, overlapping vocalizations that, based on their largely dif-
fering amplitudes, were evidently emitted by several birds were
sometimes merged within a single detection. This is because in
the current study we make use of single-channel recordings, which
do not facilitate the spatial localization and the acoustic separation
of different birds.

In brief, each sequence of audio feature vectors X, computed as
explained in Section 2.2.1, is subject to the log-likelihood ratio test
(10) applied on frame-by-frame basis. Subsequently, the scores
obtained in this manner are compared with the decision threshold
0, resulting in a series of binary decisions: “1” - if the audio feature
vector belongs to a V. chilensis call event or “0” - if the feature vector
corresponds to sound of a different origin. Finally, these decisions
are processed as follows in order to discover the boundaries and
timestamps of the beginning and end of each call event.

For that purpose, we first convolve the frame-by-frame binary
decisions with a rectangular window with a duration of 50 ms.
This first step helps to avoid sporadic misclassifications of neigh-
boring frames, which are due to short bursts of interfering audio
signals. We keep for further processing only sequences with a
length of at least 20 ms and thereby alleviate short events that
are not likely to correspond to a V. chilensis vocalization.

In order to merge together closely spaced call events into a call
series, we convolve the decisions made so far with a rectangular
window of 1 s duration and estimate the call series boundaries.

Thus the sequence of post-processing steps constitutes the rec-
ognizer output which is converted to timestamps, indicating the
onset and end of the V. chilensis call events. During the perfor-
mance evaluation experiments the timestamps found by the recog-
nizer were compared with the manually tagged ground-truth
timestamps derived as explained in Section 2.1.3.

2.3. Experimental protocol and performance metrics

In all experiments we followed a common protocol that makes
use of the datasets described in Section 2.1.3. Specifically, for the
creation of the acoustic background model Ayzy; we made use of

approximately 27 h of audio recordings, representing the acoustic
conditions specific to the area of the northern Pantanal. Next, using
the method described in Section 2.2.2, we adapted a species-
specific GMM model 2, for V. chilensis. Collectively these two
models were used for implementing the log-likelihood ratio test
(10) for short sequences of three feature vectors. For estimating
the value of the threshold 0 (8) we made use of the four recordings,
described as set VLO1 (cf. Section 2.1.3), which contains a total of
80 call series of the target species. The decision threshold 0 was
set as the minimum value of 0 that maximizes the recognition of
V. chilensis call series with zero false positives on set VLO1. Once
the threshold 0 was adjusted, the performance of the V. chilensis
recognizer was evaluated with the validation dataset VLO2,
consisting of ten audio recordings with a total of 337 call series
of the target species (cf. Section 2.1.3).

The recognition results were evaluated in terms of two perfor-
mance metrics: accuracy (14) and correct (15) measured in
percentages:

Accuracy = N

x 100, [%], (14)

Correct = % x 100, [%], (15)

where H (hits) indicates how many times the V. chilensis recognizer
correctly recognized a target vocalization, I stands for insertions
(false positives), and N is the total number of target events accord-
ing to the annotations of the test dataset VLO2. The annotations of
VLO02 contain two types of V. chilensis events:

e 337 vocalizations confirmed by an expert ornithologist as orig-
inating from the target species V. chilensis,

e 137 vocalizations heard and/or seen in the spectrogram and
allegedly originating from the target species but impossible to
confirm acoustically with high confidence due to competitive
sound events, high noise floor, or great distance of the calling
bird from the microphone.

The events of the first type were considered as targets (N = 337)
and were used when counting the number of hits (H) and misses
(N-H) of the V. chilensis recognizer. The 137 events of the second
group were merged with the 337 to form an extended set of
337 + 137 =474 V. chilensis events. This extended set was used as
a reference when counting the number of insertions I. Therefore,
for insertions we count only detections which do not coincide with
the extended set of 474 V. chilensis events. However, due to the fact
that many V. chilensis call series overlap with competing, some-
times very strong signals of other species, we inspected all recog-
nizer-generated timestamps in Adobe Audition to exclude the
possibility that an apparent hit in fact represented a false positive
detection.

Since the validation dataset VLO2 (Section 2.1.3) consists of
unedited field audio recordings, the V. chilensis events have dissim-
ilar amplitude and clarity. In the present study the main focus is on
detecting call events emitted by birds within a range of few meters
to several dozen meters from the microphone and with amplitude
above —30 dB. These sound levels correspond to signal strengths
that ornithologists can identify with certainty when using tradi-
tional audio visual survey methods (cf. Jahn, 2011a, 2011b) and
thus facilitate the interpretation of the observed acoustic activity
patterns.

However for the purpose of comprehensiveness, in Section 3 we
report the recognition results at a wider range of sound levels: [0,
—20] dB, [0, —30] dB, [0, —40] dB, [0, —50] dB. In fact, the category
[0, —50] dB also incorporates a certain number of call events with
amplitude below —50 dB, which were discernible during manual
annotation by an expert bioacoustician. These sound levels
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Table 3
Split of the Vanellus chilensis vocalizations depending of the amplitude of the loudest
note in a sound event.

Table 4
Recognition results depending on the loudest call amplitude in Vanellus chilensis
vocalizations.

Range # Target # Not confirmed # Total [0,-20dB] [0, -30dB] [0, —40dB] [0, -50dB]
[0, —20] dB 44 0 44 GMM1024
[0, —30] dB 111 0 111 Hits, H 43 80 82 83
[0, —40] dB 240 2 242 Misses, N-H 1 31 158 254
[0, —50] dB 337 137 474 Insertions, [ 0 0 0 0
Total instances, N 44 111 240 337
Accuracy 93.2% 85.6% 45.4% 32.9%
correspond to the maximum amplitude of the loudest note in each Correct 97.7% 87.4% 46.3% 33.5%
call event. The number of target events for each of these ranges is GMM512
presented Table 3. &‘FS' H N ‘1‘3 51’; }gg ;(3’(]5
In the reporting for each group, target events with amplitude mlsesretis('ms_ I 0 0 o o
below the specified lower boundary were not counted as misses Total insta,nces, N 44 111 240 337
if not detected by the V. chilensis recognizer. Accuracy 97.7% 82.9% 417% 30.0%
Correct 97.7% 82.9% 41.7% 30.0%
3. Results GMM256
Hits, H 43 95 109 111
3.1. Detector performance assessment Misses, N-H 1 16 131 226
Insertions, I 3 3 3 3
) 3 ) Total instances, N 44 111 240 337
All experimental results reported here are for the validation set A 90.9% 82.9% 442% 32.0%
. . . . . ccuracy .9% 9% 2% .0%
VL02, which consists of ten 14—¥n.mute recordings (Sect}on 2.1.3). Correct 97.7% 86.5% 45.4% 32.9%
In Table 4 we present the recognition results for the V. chilensis rec- MM 128
ognizer for quels of varying complemty: 1024, 512, 25§, 128, 64, Hits, H 43 93 104 105
32, 16 or 8 mixture components in the model, depending on the Misses, N-H 1 18 136 232
amplitude of the loudest call in each bird call series: [0, —20] dB, Insertions, I 0 0 0 0
[0, —30] dB, [0, —40] dB, and [0, —50] dB. Total instances, N 44 111 240 337
The accuracy and correctly recognized target events depend on Accuracy 97.7% 83.8% 43.3% 31.2%
the size and the quality of the model (Table 4). All models achieved Correct 97.8% 83.8% 43.3% 31.2%
over 90% correct detections for V. chilensis vocalizations with high GMM64
amplitude [0, —20] dB; however the models with 512 and 128 mix- Hits, H 42 72 73 73
. Misses, N-H 2 39 167 264
ture components demonstrated superior accuracy as they allowed Insertions. I 0 o 0 o
;elcogmtlgl.l of V.. Chller.lSlS so;mds ;Nlth h}gher accuracy a;n;li without Total instances, N 44 11 240 337
alse posntlvesl (1rflser;:ons) orl al _alrlnplltude ranges..At ough the Accuracy 95.5% 64.9% 30.4% 21.7%
accuracy results for the models with 512 and 128 mixture compo- Correct 05 5% 64.0% 30.4% 21.7%
nents are quite close, the performance of the model GMM128 is CMM32
§11ghtly better for signals with lqudest calls in the range of primary Hits, H Iy 36 04 o5
interest [0, —30] dB as well as in the ranges [0, —40] dB and [O, Misses, N-H 2 25 146 242
—50] dB. Insertions, | 1 1 1 1
The results, namely recognition accuracy of 97.7% for strong V. Total instances, N 44 m 240 337
chilensis sound events [0, —20] dB, and accuracy 83% for vocaliza- Accuracy 93.2% 76.6% 38.8% 27.9%
tions with amplitude of the strongest call in the range [O, Correct 95.5% 77.5% 39.2% 28.2%
—30] dB, chart the margins of applicability of the current V. chilen- GMM16
sis recognizer. Since the noise floor in natural environments is Hits, H 42 97 122 124
. . . Misses, N-H 2 14 118 213
time-varying, many of the weaker calls and call series often get Insertions. I 5 6 6 p
buried in the background noise. However we feel that this does Total instances, N 44 111 240 337
pot affect the usgfulr}ess of the recognizer since the a.cc.)u.stlc activ- Accuracy 81.8% 82.0% 48.3% 35.0%
ity of the lapwing is very well captured in the vicinity of the Correct 95.5% 87.4% 50.8% 36.8%
recording stations. In this context it is of particular importance that CMMS
the reported accuracy is obtained on real-field recordings and for Hits, H 40 77 36 87
operational settings tuned at zero insertions, i.e., zero false posi- Misses, N-H 4 34 154 250
tives rate. Avoidance of false positives is desirable as this makes Insertions, [ 8 8 8 8
the recognizer appropriate for automating biological studies Total instances, N 44 1 240 337
focused on statistical analysis of presence/absence data and of Accuracy 72.7% 62.2% 32.5% 23.4%
Correct 90.9% 69.4% 35.8% 25.8%

hourly and daily V. chilensis vocal activity (Figs. 5 and 6).
3.2. Processing speed

On a contemporary PC with processor i7 working at 3.4 GHz and
OS Microsoft Windows 7, the V. chilensis recognizer operates at
0.08 real time when a single core of the i7 processor is used.
Further speed-up of computations is feasible by optimization of
the audio pre-processing and audio feature extraction code, and
by means of multi-core computing schemes. Such a speed-up will
be the subject of further investigations.

3.3. Analysis of detector results

The V. chilensis detections indicate a pronounced decrease in
cumulated daily acoustic activity during July 2013 (Fig. 6).
Furthermore, nocturnal activity is considerable higher during
moonlight nights, i.e., between first quarter and last quarter moon
compared with moonless nights around new moon. With respect
to diurnal activity patterns there is a significant increase in the
number of vocalization events near sunrise and sunset (Fig. 5), as
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Fig. 5. Decrease in cumulated daily acoustic activity of Vanellus chilensis at the end of the breeding season in July 2013 and variation in nocturnal activity in relation of the

lunar phases; recording station PPA001, Fazenda Pouso Alegre, Mato Grosso, Brazil.
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Fig. 6. Variation of cumulated diurnal acoustic activity of Vanellus chilensis in relation to sunrise and sunset in July 2013; recording station PPA001, Fazenda Pouso Alegre,

Mato Grosso, Brazil.

is to be expected for bird species that are mostly diurnal (cf. Aide
et al. (2013, p. 13, Fig. 4). The recognition results demonstrate that
automated acoustic detection facilitates the quantitative assess-
ment of changes in acoustic activity. In other words, detailed
statistics on different time scales can be derived.

4. Discussion
4.1. Technology development aspects

The GMM-UBM approach employed here was originally devel-
oped for speaker verification tasks to determine whether or not a
given sentence was pronounced by a specific person (Reynolds
et al., 2000). The decision is usually made at the file level, based

on audio segments with durations in the range of a few seconds
to some dozens of seconds or even minutes. The GMM-UBM
approach was previously used for bird species classification only
in a speaker verification-like setup (Graciarena, Delplanche,
Shriberg, Stolcke, & Ferrer, 2010). Making use of audio recordings,
assumed to contain a single bird species per file, Graciarena et al.
(2010) tested each species-specific model with multiple true trials
from the target species and with impostor® trials from other species
in order to compute the classification accuracy.

In contrast to Graciarena et al. (2010), our species-specific rec-
ognizer scans through long real-field recordings and detects start

5 Impostor (non-target) is when a species-specific model is tested against
recordings of other species.
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and end times of V. chilensis call events, without the need of pre-
liminary segmentation of the audio to single-species segments.
Furthermore, our method makes use of a purposely-developed
post-processing algorithm, incorporating domain knowledge about
the structure and duration of V. chilensis call events. This post-pro-
cessing algorithm is applied on the output of the log-likelihood
ratio estimator in order to obtain the boundaries and timestamps
of single-note calls and call series.

In addition, while Graciarena et al. (2010) relied on GMM-UBM
with 1024 components in order to study the applicability of differ-
ent audio parameterization setups, we demonstrated that for the V.
chilensis recognizer a smaller model with 128 components is more
appropriate, even if we derived the V. chilensis model using an
abundance of recordings for the target species (~45 min).

Kwan et al. (2006) created a complete system for localization,
tracking, and classification of birds with multiple microphones.
They reported 90% classification rates in experimental setups
where bird sounds were simulated (played through a personal
computer) and detected by their system. Later on, Marcarini,
Williamson, and de Sisternes Garcia (2008) followed the same
approach for GMM-based closed-set classification of nine bird spe-
cies. The reported classification accuracy was in the range between
7.1% and 81.9% depending on the species and the acceptable level
of false positive rates. Both works made use of plain GMM classifi-
cation of birds, under the assumption that preliminary segmenta-
tion of the audio to single-species segments is available. The use
of plain GMM classification does not allow for proper account of
unlabeled co-occurring sound events and proper modeling of the
acoustic background, which makes the classifier error prone in
uncontrolled real-field conditions. By contrast, the GMM-UBM
approach used in our work creates species-specific models, which
are adapted from a large acoustic background model built for the
specific operational environment. Therefore our modeling
approach has the potential to achieve a better discriminative
power in real-field conditions. Of course this advantage depends
on the assumption that the acoustic background model is repre-
sentative of the specific environment.

In the aforementioned studies (i.e., Graciarena et al. (2010),
Kwan et al. (2006), Marcarini et al. (2008)) the experimental eval-
uation was performed with test files that contained only one dom-
inant species per file, and the decision was made at file level
without the need to estimate the boundaries of call events. In the
present work, we evaluate the proposed method with continuous
real-field recordings captured in uncontrolled conditions (cf.
Sections 2 and 3) and automatically search for the call events of
interest and their boundaries.

4.2. Practical use of the recognizer

The GMM-UBM based V. chilensis recognizer facilitates the
analysis of acoustic activity patterns at different time scales. We
demonstrate the practical usefulness of the recognizer with results
on cumulated diurnal and daily acoustic activity of V. chilensis over
one month of continuous recordings (Figs. 5 and 6). Comparable
time resolution is hardly achievable with observer-based tradi-
tional bird survey methods, particularly in long-term monitoring
studies.

In the near future we will screen complete annual cycles of
recordings from multiple Pantanal recording stations with the V.
chilensis recognizer. We hypothesize that the analysis of the distri-
bution and abundance of the target species will show a close cor-
relation between the annual flood-drought cycle in the Pantanal
region and the life history of the lapwing. A research effort on such
a scale is neither practical nor possible for human observers, as the
collection of any comparable amount and quality of evidence is

logistically prohibitive, and most importantly, it is beyond the lim-
its of traditional human-expert-based methods.

Autonomous acoustic recording units, in combination with
automated species-specific recognizers, such as the one described
here, facilitate the continuous 24/7 surveillance of sound-produc-
ing animal species and thereby provide valuable information on
the biology and the conservation status of the species observed.

4.3. Research limitations

In the present study we aimed to achieve high recognition accu-
racy at zero false positives rates. Therefore we only considered V.
chilensis vocalizations with loudest call notes in the range |[O,
—30] dB. Bird vocalizations at these sound levels can be undoubt-
edly confirmed by experienced ornithologists during traditional
field surveys, even under noisy environmental conditions (Jahn,
2011a, 2011b). At the same time, a reliable automated recognition
of weaker call events, with audio levels below —30 dB, would be of
significant interest for biological studies, considering that human
experts routinely detect animal vocalization down to —40 dB or
even less (pers. obs.). However at the present development stage,
any fine-tuning on the detection of such faint call events leads to
a significant increase in the false positives rates. A major challenge
to be addressed when targeting the detection of weak call events,
with amplitude on or below the ambient noise floor, is that the
recognition results heavily depend on the availability of reliable
noise suppression methods and their efficiency in rapidly varying
ambient noise conditions. At small distances of a few meters,
multi-sensor microphone arrays provide the means for noise sup-
pression, but at greater distances alternative approaches must be
used.

A direct comparison of the automatically detected timestamps
with the tags of the expert-annotated validation library VL02
revealed that in many cases only parts of longer call series were
detected. In certain cases even some of the high-amplitude call
notes went undetected. One reason for this phenomenon is the
co-occurrence of sounds emitted by V. chilensis and by other spe-
cies. The use of more advanced noise suppression methods, which
operate off-line and are applied directly on the audio spectrogram
seen as an image, may offer a solution to this problem (Briggs et al.,
2012; Cadore, Gallardo-Antolan, & Pelaez-Moreno, 2011;
Potamitis, 2014). However future research is required in order to
investigate the applicability of these methods to the processing
of long uncontrolled real-field recordings.

Finally, these acoustic models were built from a moderate
amount of training (approx. 45 min) and background recordings
(approx. 27 h), representing the acoustic conditions over a period
of only a few months. In particular, for the background model we
made use of fifty-four 14-minute recordings with a total duration
of about 12 h from Fazenda Pouso Alegre soundscapes recorded
in 2012, covering August (38 files), October (4), and November
(12), as well as thirty-two 30-minute recordings (about 15 h) made
in the SESC Pantanal Reserve area in January 2014. It is likely that
this relatively small background library cannot represent the
complex and variable Pantanal soundscapes of a complete annual
cycle of recordings. Therefore, recognition accuracy over long time
periods will depend on the availability of a representative
acoustic background model, containing samples of all months of
the year.

4.4. Follow-up technological development and research

Future research efforts will aim to increase the sensitivity of the
V. chilensis recognizer in order to detect vocalizations down to
amplitudes of at least —40 dB. The latter signal strengths are closer
to the limits at which a bird-sound expert can identify
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vocalizations under low-to-medium ambient noise conditions.
Recent off-line noise suppression methods, which operate on the
audio spectrogram seen as an image, offer promising options for
the elimination of ambient noise (Briggs et al., 2012; Cadore,
Gallardo-Antolan, & Pelaez-Moreno, 2011; Potamitis, 2014).
These methods are usually based on morphological filtering of
the spectrogram or make use of other established image noise
reduction techniques in order to deal with short-duration sound
events and/or long-duration interferences. Furthermore, embed-
ding domain knowledge about the operational environment, the
structure of the species-specific sound emissions, and other prior
information are seen as promising research directions that could
facilitate the detection of weaker call events. Likewise, rule- and
grammar-based methods for post-processing the output of the
log-likelihood ratio estimator could contribute to the improvement
of the V. chilensis recognition results.

Other improvements, like the expansion of the acoustic back-
ground model, processing complete annual cycles of recordings,
and the compilation of more comprehensive V. chilensis training
libraries will be investigated as well. Specifically, we plan to inves-
tigate whether the enlargement and the enhancement of the V.
chilensis training library with annotations at the level of call types
and ethological functions could facilitate the analysis of the lap-
wings’ behavior.

In order to implement long-term monitoring efforts, we foresee
integration of the V. chilensis recognizer in the large Pantanal
Database Repository created by the INAU Project 3.14.

5. Conclusion

The main advantage of the approach presented here is that we
detect target species’ call events and their timestamps in continu-
ous real-field recordings, regardless of weather conditions and
time of day. Related previous research focused on classification
tasks at the file-level, that is, on the processing of short audio
recordings containing sound signals of a single dominant species
or on the processing of continuous soundscapes made in favorable
climatic conditions, such as dry and calm weather.

The proposed automated method for the recognition of Vanellus
chilensis call events incorporates three important components: (i)
traditional audio parameterization, which is adapted to the fre-
quency range of V. chilensis sound emissions; (ii) a statistical log-
likelihood ratio estimator based on the GMM-UBM approach,
which here is employed in a search-and-detect mode in order to
find segments with acoustic activity of the target species; and
(iii) post-processing of the log-likelihood estimator output in order
to aggregate segments belonging to single-note calls and call ser-
ies, and to estimate their boundaries in terms of absolute time.
The recognizer demonstrated good sensitivity and ability to detect
weak sounds with amplitudes down to —30 dB with low false pos-
itive rates and robustness to the variability of acoustic environ-
ments. Validation experiments on real-field recordings and
analysis of recognizer results confirmed the practical usefulness
of our approach. It provides the means to automatize ornithologi-
cal studies and to perform statistical analysis of the acoustic activ-
ity patterns of V. chilensis.

We anticipate that the V. chilensis recognizer will be particularly
useful in large-scale and long-term biological studies, as the auto-
matically detected call events and their timestamps provide the
basis for processing terabytes of recordings within reasonable time.

The automated detection of V. chilensis acoustic activity at zero false
positive rates facilitates statistical tests at multiple time and geo-
graphical scales. For instance, it supports the detection of pres-
ence/absence patterns and the estimation of the target species’
abundance in relation to the flood/drought cycle in our study area.

Future research will be focused on call-type level annotation of
an expanded V. chilensis training library in order to support the
analysis of the behavioral contexts in which certain vocalizations
are emitted. This will make possible the determination of distinct
phases of the species’ natural history, namely start/end dates of
territory establishment, copulations, nesting, presence of hatch-
lings and juveniles, and formation of flocks. Subsequently, specific
behaviors could be correlated with other ecological factors such as
climate and the water level data. It is clear that such a detailed
knowledge would be very helpful for the implementation of mean-
ingful management and conservation measures. Finally, an impor-
tant research direction will be the increase of processing speed and
data throughput of the recognizer. This will allow simultaneous
processing of complete annual cycles of recordings recorded at
multiple locations.

Beyond the horizon of our project, we expect that automated
monitoring technologies will gain importance in global efforts to
reduce biodiversity loss and avert dangerous degradation in the
populations of sound-emitting animal species.
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Appendix A

Source files for the generation of spectrograms. The start and end times refer to the 1.5-second segments shown in Fig. 1.

Spectrogram Reference file Start End

[m:ss.ms] [m:ss.ms]
a BIAVCHCHVACHLA_BRMTAPPPA001C001A20120731T021500B_S001306E022415_ID1q1c1e0fOR 0:12.961 0:14.461
b BIAVCHCHVACHLA_BRMTAPPPAO01C001A20120727T054500B_S042800E050394_ID1q2c3e0fOR 0:16.353 0:17.853
C BIAVCHCHVACHLA_BRMTAPPPA001C001A20120729T164500A_S142704E145800_ID1q3c3e0f0OR 0:26.129 0:27.629
d BIAVCHCHVACHLA_BRMTAPPPAO01C001A20120731T174500A_S063200E080400_ID1q3c3e0fOR 0:14.788 0:16.288
e BIAVCHCHVACHLA_BRMTAPPPAO01C001A20120801T013000B_S031499E032000_ID1q2c2e0fOR 0:14.348 0:15.848
f BIAVCHCHVACHLA_BRMTAPPPA001C001A20120730T023000B_S054014E064302_ID1q2c1e0fOR 0:15.883 0:17.383
g BIAVCHCHVACHLA_BRMTAPPPAO01C001A20120731T101500A_S023000E032500_ID1q1c2e0fOR 0:26.352 0:27.852
h BIAVCHCHVACHLA_BRMTAPPPA001C001A20120730T060000B_S110003E145800_ID1q1c3e0fOR 3:44.997 3:46.497
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