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a b s t r a c t

A major challenge in the automated acoustic recognition of bird species is the audio segmentation, which

aims to select portions of audio that contain meaningful sound events and eliminates segments that con-

tain predominantly background noise or sound events of other origin. Here we report on the development of

an audio parameterization method with integrated robust frame selection that makes use of morphological

filtering applied on the spectrogram seen as an image. The morphological filtering allows to exclude from

further processing certain audio events, which otherwise could cause misclassification errors. The Mel Fre-

quency Cepstral Coefficients (MFCCs) computed for the selected audio frames offer a good representation

of the spectral information for dominant vocalizations because the morphological filtering eliminates short

bursts of noise and suppresses weak competing signals. Experimental validation of the proposed method on

the identification of 40 bird species from Brazil demonstrated superior accuracy and faster operation than

three traditional and recent approaches. This is expressed as reduction of the relative error rate by 3.4% and

the overall operational time by 7.5% when compared to the second best result. The improved frame selec-

tion robustness, precision, and operational speed facilitate applications like multi-species identification of

real-field recordings.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biodiversity monitoring is a prerequisite for sustainable conserva-

tion action and is particularly important in efforts to reduce the loss

of species (Pereira et al., 2013). Traditionally, animal species distribu-

tion, diversity, and population density are assessed with a variety of

survey methods that are costly and limited in space and time (e.g.,

Bibby, Burgess, Hill, & Mustoe, 2000; Jahn, 2011a, 2011b).
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Since many animals, such as grasshoppers, crickets, katydids, ci-

cadas, anurans, birds, and certain mammals are more often heard

than seen, one promising non-intrusive method for monitoring their

presence and activity is the automated acoustic detection and iden-

tification. Remote and autonomous survey methods can provide con-

tinuous information on the presence/absence of rare and threat-

ened species as well as on the general status of biodiversity in a

cost-effective way (e.g., Aide et al., 2013; Ganchev, Jahn, Marques,

de Figueiredo, & Schuchmann, 2015; Potamitis, Ntalampiras, Jahn, &

Riede, 2014; Sueur, Pavoine, Hamerlynck, & Duvail, 2008). Thus, the

use of new technologies is considered as an opportunity for facilitat-

ing biodiversity monitoring efforts in remote and difficult-to-access

areas, such as the vast Pantanal wetlands of Brazil (Schuchmann,Mar-

ques, Jahn, Ganchev, & Figueiredo, 2014).

Based on soundscapes, it is possible to identify the species that

are present in an area. However this is not a simple task, since

the amount of data to be analyzed is very large, reaching the order
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of several terabytes per continuous annual cycle of recordings. Con-

sequently, data processing is lengthy and computationally expen-

sive (Oba, 2004). The principle prerequisites for large-scale appli-

cation of soundscape analysis methods are an increased species

recognition accuracy and reduction of the overall computational

demands. For that purpose improvements, in the sense of accu-

racy and speed, are required in the audio parameterization and the

classification methods. In the present work we focus on the audio

parameterization.

Nowadays, the statistical machine learning approach dominates

the field of bioacoustics. The audio signal is first parameterized and

subsequently the statistical distribution of the audio parameters is

modeled. The most widely used modeling techniques for acous-

tic animal identification are based on the Hidden Markov Model

(HMM) (Bardeli et al., 2010; Chu & Blumstein, 2011; Potamitis et al.,

2014; Trifa, Kirschel, Taylor, & Vallejo, 2008) or its single-state ver-

sion known as Gaussian Mixture Models (GMMs) (Ganchev et al.,

2015; Henríquez et al., 2014). The success of the GMM- and HMM-

based recognition method depends on the appropriateness of the

audio parameterization process, particularly the segmentation and

selection of representative portions of the species-specific sound

emissions.

Various strategies for audio parameterizationwere reported in the

literature. Simple solutions, which incorporate energy-based frame

selection methods for eliminating silent portions of the signal, do

not depend on prior knowledge about the signal and are quite

easy to implement (Zhang & Li, 2013). This is the main reason for

their widespread use in environmental sound recognition. However

their accuracy in low signal-to-noise ratio (SNR) conditions is often

unsatisfactory.

In a large-scale experiment on the acoustic identification of 501

bird species, Stowell and Plumbley (2014) applied unsupervised fea-

ture learning on raw audio, i.e. without prior segmentation and re-

ported species identification accuracy of 42.9%.

Härmä (2003) proposed a method that extracts syllables from

bird vocalizations. Huang, Yang, Yang, and Chen (2009) used this ap-

proach to classify frogs by determining three different features from

the syllables: spectral centroid, signal bandwidth, and threshold-

crossing rate. Lee, Han, and Chuang (2008) applied the same algo-

rithm to identify birds sounds by generating Mel Frequency Cep-

stral Coefficients (MFCCs) from syllables and Lee, Chou, Han, and

Huang (2006) classified animal sounds on the basis of linear dis-

criminant analysis. Other syllabification approaches were studied

by Chou, Lee, and Ni (2007), who obtained syllables and clustered

them with the fuzzy C-means method whereas Chou and Liu (2009)

used wavelet transformations to determine sections in the bird

songs.

Juang and Chen (2007) proposed an energy-based method

for audio segmentation and subsequent selection of segments

with bird song activity. In a related work Acevedo, Corrada-Bravo,

Corrada-Bravo, Villanueva-Rivera, and Aide (2009) manually se-

lected portions of interest in the spectrogram, and then compared

various machine learning techniques for audio data from frog and

bird species. Neal, Briggs, Raich, and Fern (2011) used a Random

Forest classifier to implement supervised time and frequency audio

segmentation and Evangelista, Priolli, Silla, Angelico, and Kaestner

(2014) experimented with sound representation in the frequency

domain, energy of the signal, and its spectral centroid to carry out an

automatic segmentation of audio.

A more recent approach, based on the idea to treat the sound

spectrogram as an image, selects regions of interest in the spectro-

gram and then extracts their statistical characteristics. The features

computed from these regions of interest are used to train machine

learning algorithms (Aide et al. 2013; Briggs et al., 2012; Kaewtip,

Tan, Alwan, & Taylor, 2013; Potamitis, 2014). Likewise, Bardeli (2009)

proposed a method in which the sound spectrogram is processed

as an image and subsequently used similarity-search techniques

to classify a set of animal sounds. In de Oliveira et al. (2015), mor-

phological filtering was employed for the purpose of bird acoustic

activity detection which is part of a species-specific recognizer for

automated acoustic recognition of Vanellus chilensis vocalizations.

Motivated by previous related work, in Section 2 we present an

improved audio parameterization method that incorporates robust

audio segmentation based on morphological processing of the sound

spectrogram considered as an image. Our work differs from previ-

ous related work (Aide et al. 2013; Briggs et al., 2012; de Oliveira

et al., 2015; Kaewtip et al., 2013; Potamitis, 2014), where morpho-

logical filtering of the spectrogram is only part of noise suppres-

sion or acoustic activity detection. By contrast, in the current work

it is used as part of the robust frame selection that is integrated in

the MFCC feature extraction process. By this the audio parameteri-

zation computes MFCCs only for the selected audio segments, which

speeds up the operation. In Section 3 we describe the experimen-

tal setup, which involves the classification of short audio recordings

of 40 bird species from Mato Grosso, Brazil. The results of a com-

parative evaluation of the proposed method with three other frame

selection approaches (Briggs et al., 2012; Härmä, 2003; Sahidullah

& Saha, 2012) are presented in Section 4. Finally, in Section 5 we

evaluate our work providing a detailed discussion on the advan-

tages and shortcomings of the proposed method and its application

area.

2. Method

Parameterization transforms the audio signals so that useful in-

formation is presented in a compact way and irrelevant information

is eliminated. The audio features computed during parameterization

are next fed to the classification stage (Fig. 1). The latter allows for

a final decision of the category to which each input audio recording

belongs, based on the scores computed from the individual species-

specific models.

An effective parameterization is crucial for achieving high recog-

nition accuracy.When the parameterization does not fully convey the

useful information or when this information is buried in audio fea-

ture variability unrelated to the species-specific traits, the modeling

and the identification processes are seriously impeded. In an attempt

to improve the bird identification accuracy and to reduce compu-

tational demands we propose a parameterization method that pre-

serves audio segments carrying useful information, in our case bird

sound events. Likewise, short-term and narrow-frequency bursts of

energy are discarded because they are definitely not bird vocaliza-

tions. Therefore, audio features are computed only for selected sub-

sets of audio frames, reducing the overall computational demands.

Elimination of audio segments not containing bird sounds also

means a lower risk of misidentification in the classification stage. In

Section 2.1 we outline the robust frame selection incorporated in the

MFCC computation and post-processing, and in Section 2.2 we elab-

orate on the classification process that uses these audio features.

2.1. Audio parameterization

The parameterization procedure consists of the following five

steps (Fig. 1). First, the audio recording obtained from the database

is subject to preprocessing. This step consists of resampling to a sam-

pling frequency of 24 kHz and high-pass filtering of the signal with

a 10th order Butterworth filter. The audio is resampled in order to

reduce the computational and memory demands in the following

processing steps, whereas the high-pass filter with cutoff frequency

1 kHz reduces the influence of wind noise and other low-frequency

interferences from the environment.

Thereafter, the dynamic spectrum of the preprocessed time-

domain signal s(n) is computed through the short-time discrete
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Fig. 1. Overall block diagram of the acoustic bird species identification process, show-

ing the proposed audio parameterization method and the following classification

stage.

Fourier transform (STDFT):

S(k, l) =
N−1∑
n=0

s(n)W(n + lL) exp

(
− j2πnk

N

)
,0 ≤ n, k ≤ N − 1, (1)

where n is the index of the time domain samples, k is the index of the

Fourier coefficients, and l denotes the relative displacement of the

current audio segment in terms of steps of L samples. The Hamming

windowW(m), defined as

W(m) = 0.54 − 0.46 cos

(
2πm

M

)
,m = 0,1, . . .M − 1, (2)

is applied to reduce the spectral distortions caused by an abrupt

change of signal amplitude at the boundary points of each audio

segment. Here the STDFT is obtained after applying the discrete

Fourier transform for N = 512 samples on the zero-padded signal s(n)

weighted with a sliding Hamming window of M = 480 samples. The

Hamming window is sliding with a step of L = 120 samples between

subsequent segments. The spectrogram |S(k,l)| obtained to this end

is seen as an image and is the main source of information for the

subsequent processing steps (Fig. 2).

However, the raw image of the spectrogram is not sufficient to

perform an accurate selection of the high energy areas, as most

recordings contain noise and the competing acoustic activity of

other animals. Thus, the direct use of the raw spectrogram increases

the probability that sounds originating from different sources are

selected as a single acoustic event.

We apply morphological operators on the spectrogram in order to

eliminate short-time narrow-band bursts of energy and thus reduce

Fig. 2. Spectrogram of a resampled and high-pass filtered audio recording.

the risk of merging together more informative with less informa-

tive sound events. According to Bovik (2005), the morphological

operators offer a convenient method of image enhancement by

noise suppression and simplification of the spectrogram by retain-

ing only those components that satisfy certain size or contrast cri-

teria. Similarly to Cadore, Gallardo-Antoln, and Pelez-Moreno (2011)

and Potamitis (2014) we apply the opening morphological operator,

which is described as the erosion operator (3) followed by dilation (4).

|Se(k, l)| = |S(k, l)| � B = {z : Bz ⊆ |S(k, l)|}, (3)

|Sed(k, l)| = |Se(k, l)| ⊕ B̂ = {z : B̂z ∩ |Se(k, l)| �= ∅}. (4)

Here |S(k,l)|, |Se(k,l)|, and |Sed(k,l)| are images corresponding to the

spectrogram after applying the erosion operator and after applying

both the erosion and dilation operators. B is called the structuring

element and has a simple geometrical shape, in our case a rectan-

gle of 40 × 30 pixels. Following erosion, the result will be the set

of all points z such that B, translated by z, is contained in the image

|S(k,l)|. In the dilation operator, B̂ is the set of pixel locations z, where

the reflected structuring element overlaps with foreground pixels in

|Se(k,l)| when translated to z. Making use of both operators, we rep-

resent the opening morphological operator on the spectrogram as:

|Sed(k, l)| = (|S(k, l)| � B) ⊕ B̂. (5)

The operator erosion reduces bright regions and enlarges dark re-

gions in the image. By contrast, the operator dilation enlarges bright

regions and reduces dark image regions. The subsequent application

of both operators eliminates certain very small elements in the spec-

trogram, like short-lived audio signals and weak distortions in the

time-frequency space (Fig. 3). The size of the elements that survive

this filtering process depends on the size of the structuring elements

B and B̂.

If we compare the regions of highest energy in Figs. 2 and 3,

it is evident that after applying the morphological operators cer-

tain elements of the spectrogram are less prominent, e.g. these

corresponding to noise and weak vocalizations of competing species.

Fig. 3. The spectrogram after applying the opening morphological operators

(cf. Fig. 2).
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Fig. 4. Selected frames after applying the frame selection algorithm.

The resulting spectrogram appears cleaner and thereby facilitates

the more effective and robust selection of the representative audio

frames.

Here we incorporate an algorithm for robust frame selection,

which adjusts the decision threshold based on the histogram of the

sum of amplitudes for all frequency components in each frame l of

the processed spectrogram |Sed(k,l)|

E(l) =
N−1∑
k=0

|Sed(k, l)|, l = 1,2, . . . T, (6)

where T is the total number of frames in the specific recording.We se-

lect the bin of the histogram that contains less than 30% of the highest

bin, considering only those bins that appear after the highest bin. The

center of the selected bin specifies the threshold value θ . Each frame

l with sum of the amplitude (6) greater than the threshold will be

selected for the next processing step:

|Ssel(k, lsel)| =
{|Sed(k, l)| for E(l) ≥ θ

0 otherwise
. (7)

The selected audio frames for the spectrogram in Fig. 2 are pre-

sented in Fig. 4. Next, we compute the MFCC for each of the selected

frames (7). In order to warp the frequency range [1, 12] kHz accord-

ing to the Mel-scale, we apply a filter-bank Hi(k) consisting of K = 22

Mel-spaced equal-height filters on the power spectrum |Ssel(k, lsel)|
2

for each selected frame lsel and compute the log-energy for the corre-

sponding filter output:

Sm(i, lsel) = ln

(
N−1∑
k=0

|Ssel(k, lsel)|2Hi(k)

)
, i = 1,2, . . .K. (8)

Here, each filter in the filter-bank is defined as:

Hi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for k < fbi−1(
k− fbi−1

)
(
fbi

− fbi−1

) for fbi−1
≤ k ≤ fbi

(
fbi+1

−k

)
(
fbi+1

− fbi

) for fbi ≤ k ≤ fbi+1

0 for k > fbi+1

, i = 1,2, . . .K, (9)

where i stands for the ith filter, fbi are the boundary points of the indi-

vidual filters, and k = 1,2, . . . ,N corresponds to the kth coefficient of

the N-point discrete Fourier transform (DFT). The boundary points fbi
are expressed in terms of position, which depends on the sampling

frequency Fs = 24 kHz and the number of points N = 512 in the DFT:

fbi =
(
N

Fs

)
· f̂−1

mel

(
f̂mel( flow) + i · f̂mel( fhigh) − f̂mel( flow)

K + 1

)
, (10)

where the function f̂
mel

stands for the transformation

f̂mel = 1127 · ln
(
1 + flin

700

)
, (11)

flow = 1 kHz and fhign = 12 kHz are respectively the low and high

boundary frequencies for the entire filter bank, K is the total number

of filters, and f̂−1
mel

is the inverse transformation to linear frequency

scale, defined as:

f̂−1
mel

= flin = 700

[
exp

(
f̂mel

1127

)
− 1

]
. (12)

Finally, we apply the discrete cosine transform on the result of (8)

in order to obtain J+1 MFCC parameters:

Cj =
K∑
i=1

|Sm(i, lsel)| cos
(
j(i + 0.5)

π

K

)
, j = 0,1, . . . , J. (13)

Afterwards, the MFCCs are standardized for zero mean and unit

standard deviation. Due to the frame selection process, the MFCCs

are computed only for the best frames that represent the dominant

sounds, which increase the probability of successful classification in

the pattern recognition stage (Fig. 4).

2.2. Classification

The classification stage is fed with the standardized feature vec-

tors obtained in the audio parameterization stage presented in

Section 2.1. As we consider a multi-class classification problem,

species-specific datasets are required for training each speciesmodel.

Once all models are trained, the system is ready for classifying record-

ings of interest.

For each recording to be analyzed, the standardized feature vec-

tor obtained from the audio parameterization stage is compared with

each model. Based on the similarity scores a final decision is made

about the class to which the dominant audio signals belong.

Classification accuracy is affected by the quality of the audio

features and is significantly compromised in the presence of noise

or feature variability not linked to species-specific traits, and in-

terference from competing species. Therefore, the proposed audio

parameterization method aims to select only the best frames of

the signal. Likewise, weaker competing sounds, sound events with

short duration, and signals that are compact in the frequency do-

main are eliminated, because they are unrelated to bird vocalizations

(Section 4.1).

3. Experimental setup

In the following subsections we briefly outline the common ex-

perimental protocol used in the comparative evaluation of the pro-

posed audio parameterization method with other related traditional

and recent methods.

3.1. Database

The audio data were downloaded from the xeno-canto archive

(www.xeno-canto.org). Wemade use of a subset consisting of 40 bird

species that are present in the State of Mato Grosso, Brazil. It is im-

portant to note that these are field recordings and each file potentially

contains vocalizations of several animal species and competing noise

caused by wind, rain, and anthropogenic interference.

Fifteen audio recordings with an average length of 32.4 s were

available for each of the 40 species. We used ten recordings for the

model creation and the remaining five for the purpose of perfor-

mance evaluation. In total there were 400 files for model creation and

200 files for performance evaluation.

3.2. Reference methods

In order to evaluate the practical value of the proposed method,

we made a comparative evaluation of traditional MFCCs com-

puted after frame selection with the (1) Gaussian Mixture Model

http://www.xeno-canto.org
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(GMM)-based energy detector (Alam, Kenny, Ouellet, Stafylakis, &

Dumouchel, 2014; Ganchev et al., 2015; Mamiya et al., 2013); (2)

“syllables segmentation” approach (Chou, Liu, & Cai, 2008; Härmä,

2003; Lee et al., 2006); and (3) “regions of interest” selection method

(Bardeli, 2009; Briggs et al., 2012; Potamitis, 2014). After some

experimentation, these reference methods were fine-tuned for the

best configuration settings on the current dataset.

3.2.1. Gaussian Mixture Model-based energy detector

The GMM-based energy detector models the distribution of short-

term changes in energy and attempts to select only promising frames

for further processing (Alam et al., 2014; Bimbot et al., 2004; Mamiya

et al., 2013). Typically, the model is designed as a two-component

GMM. The first mixture component is fitted to the distribution of the

low-energy frames and the second is fitted to the distribution of the

high-energy frames. The decision threshold is usually selected as a

trade-off at the crossing point of the two Gaussian functions. In our

case, the threshold is a function of the mean of the two components.

The threshold θ trn for the training dataset was calculated by (14) and

θ tst for the test dataset by (15):

θtrn = μ1 + μ2

2
+ 0.2|μ1 − μ2|, (14)

θtst = max (μ1,μ2). (15)

During the operation of the recognizer, θ tst is selected with a

higher value than θ trn because we wished to make a decision based

on frames with good signal-to-noise ratio.

3.2.2. Syllable segmentation

In general, bird songs can be broken down to four hierarchical

levels: notes, syllables, phrases, and songs. By using the bird song

structure, Härmä (2003) proposed an algorithm that extracts sylla-

bles from a continuous bird song, whereas Lee et al. (2006) and Chou

et al. (2008) used this algorithm to extract syllables and to calculate

for each one the MFCC.

One important parameter of this technique is the stopping crite-

rion, which determines the start and the end of the syllables. Here,

we set the stopping criterion at -30 dB below the highest amplitude

as this guarantees good sensitivity and robustness.

3.2.3. Regions-of-interest-based frame selection

This method aims to select only the interesting regions of the

spectrogram from which to extract features. Briggs et al. (2012) man-

ually selected regions of interest (ROIs) for each file. Bardeli (2009)

used the Structure Tensor technique to extract the ROIs from spec-

trograms. By contrast, Potamitis (2014) treated the spectrogram as an

image, employed a filter to detach the ROIs, and applied a threshold to

obtain a binarized image. Here we make use of the latter procedure

to construct an enhanced spectrogram that contains only the ROIs.

Subsequently we derive the MFCC for each audio frame.

3.3. Mel Frequency Cepstral Coefficients (MFCCs)

The methods outlined in Section 3.2 aim at selecting only promis-

ing portions of the spectrogram for the subsequent feature extraction

process. In the present setup we computed the MFCCs as described

by Dufour, Artieres, Glotin, and Giraudet (2013). In brief, 16 MFCCs

were computed by using awindow of 20.0ms, slidingwith a skip step

of 5.0 ms. Subsequently, the first and second time-derivatives (delta

and delta-delta coefficients) were computed to form the full feature

vector of a length of 48 parameters. The feature vectors were normal-

ized to zero mean value and unit standard deviation and then fed to

a species-specific Hidden Markov Model (HMM)-based classifier.

3.4. The Hidden Markov Model-based classifier

In the present work we relied on the HMM implementation

known as Hidden Markov Model Toolkit (HTK) (Young et al., 2006).

Specifically, we built a total of 40 three-state species-specific HMMs.

The training for estimating the model parameters was performed by

different numbers of iterations of the Baum-Welch algorithm. For the

purpose of species identification we made use of a simple grammar

that was set to select one species per test trial.

3.5. Experimental protocol and performance metrics

A common experimental protocol was used to compare the pro-

posed method with the three reference methods outlined in Section

3.2. The MFCCs computed from the training dataset described in

Section 3.1 were used to train an HMM classifier, and the test dataset

was used to evaluate it. The configuration of each HMM classifier is

explained in Section 4.

The identification performancewas evaluated in terms of percent-

age correct classifications:

Correct = H

N
× 100[%], (16)

where N is the total number of test trials and H is the number of cor-

rectly identified trials.

4. Results

In the following subsections we analyze the experimental re-

sults of the bird-identification performance evaluation, which in-

volves different frame selection and audio parameterization meth-

ods. These methods are compared in terms of identification accuracy,

time needed for training the HMM-based species-specific models,

and operational speed.

4.1. Classification performance

In order to guarantee a fair comparison, all methodswere adjusted

to their best performance. For that purpose we carried out exten-

sive tests with respect to the number of mixture components and the

number of training iterations (Table 1).

For the proposed, the GMM-based, and the ROI-based methods

the best identification accuracy was achieved with 48 mixture com-

ponents, reaching 71.5%, 70.0%, and 47.5%, respectively. By contrast,

the best result for the syllable-based method was achieved with 80

mixtures (64.5%). For the ROI-based method it was not possible to

Table 1

Performance of four methods, applying different numbers of the mixture compo-

nents per HMM state and 50 training iterations.

Method Number of mixtures Correct (%)

Proposed method 32 70.0

48 71.5

64 69.5

80 69.0

GMM-based (Sahidullah & Saha, 2012) 32 69.0

48 70.0

64 68.5

80 67.0

Syllable-based (Härmä, 2003) 32 63.0

48 61.5

64 64.0

80 64.5

ROI-based (Briggs et al., 2012) 32 42.0

48 47.5

64 45.5

80 -
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train a model with 80 mixtures because of the insufficient numbers

of frames selected by this method. Even so, the results for the ROI

method show that the best precision is achieved with 48 mixture

components.

For the tests with GMM- and ROI-based methods, the results in-

dicate a possible over-fitting during training, which might be due to

the rather small number of training and validation files. With only

20 iterations the GMM-based method gave a precision of 70.5% and

the ROI-based method of 48.0%. The proposed method still has the

highest precision (71.5%), which corresponds to a relative decrease in

the identification error of 3.4%, when compared with the second-best

method (GMM).

4.2. Processing time

We estimated the processing time for the two main process-

ing steps: the audio parameterization and the classification stages

(Tables 3–5).

The proposed and the GMM-based methods need nearly the

same time for the audio parameterization, with a slight advan-

Table 2

Performance tests with varying numbers of training iterations.

Method Train iterations Correct (%)

Proposed method 20 66.5

50 71.5

100 70.5

GMM-based (Sahidullah & Saha, 2012) 20 70.5

50 70.0

100 70.5

Syllable-based (Härmä, 2003) 20 62.0

50 64.5

100 63.5

ROI-based (Briggs et al., 2012) 20 48.0

50 47.5

100 46.5

Table 3

Average time spent per test file and the overall time spent on the audio param-

eterization (200 files). Time format: hours, minutes, seconds, and milliseconds

[hh:mm:ss.ms].

Method Average [s]

Total time spent

[hh:mm:ss.ms]

Proposed method 1.56 00:05:11.28

GMM-based (Sahidullah & Saha, 2012) 1.62 00:05:25.14

Syllable-based (Härmä, 2003) 2.38 00:07:55.31

ROI-based (Briggs et al., 2012) 5.31 00:17:41.78

Table 4

Time spent to create 40 species-specific HMM-based models for each of

the four methods.Time format: hours, minutes, seconds, and milliseconds

[hh:mm:ss.ms].

Method Time spent [hh:mm:ss.ms]

Proposed method 00:20:46.33

GMM-based (Sahidullah & Saha, 2012) 01:22:14.85

Syllable-based (Härmä, 2003) 02:15:09.43

ROI-based (Briggs et al., 2012) 01:01:18.45

Table 5

Time spent to process (classify) 200 test files. Time format: hours, minutes,

seconds, and milliseconds [hh:mm:ss.ms].

Method Time spent [hh:mm:ss.ms]

Proposed method 00:01:04.56

GMM-based (Sahidullah & Saha, 2012) 00:01:21.29

Syllable-based (Härmä, 2003) 00:02:04.60

ROI-based (Briggs et al., 2012) 00:01:26.26

tage for the proposed method. When compared with the GMM

approach the proposed method is faster by 4.3%. Such a speed up

of computations would make significant difference only when large

quantities of audio recordings are processed, which is actually the

case in applications used for species recognition in continuous field

recordings made with automated recording units. The syllable-based

and ROI-based methods are 1.5 and 3.4 times slower when compared

with the proposed method.

At the classification stage there are two different aspects: time

needed for creating the models (Table 4) and the classification time

needed during operation of the recognizer (Table 5). In the training

phase the demand for computational resources is high. However this

bottleneck can be overcome if the model creation is carried out only

once and is performed off-line. In general, the time necessary for pro-

cessing test files is less than the time needed for creating the statis-

tical models. However, when large amounts of recordings are pro-

cessed, the detector operation gets time-demanding. Therefore we

measure and report these two cases separately.

The proposed method needed less than 21 min for the creation

of the 40 species-specific models (Table 4). This is 3 to 6 times faster

than the models build for the other three audio parameterization and

frame selectionmethods. Likewise, the proposedmethod needed less

than 65 s processing time for the identification of the 200 test files

(Table 5), i.e. on average about 0.33 s per test file. This corresponds to

a reduction of the classification time by 20.6% when compared to the

second fastest (GMM-based) method, which required 81.29 s.

Combining the results for audio parameterization (Table 3) and

classification (Table 5), we can conclude that the proposed method

needs 375.84 s to process 200 files, and the second best GMM-based

method needs 406.43 s. This is equivalent to a reduction of the over-

all operational time of 7.5% while reducing the relative error rate

by 3.4%.

4.3. Comparison of frame selection methods

For better understanding the four methods evaluated here, we vi-

sualized the outcome of frame selection for two different scenarios:

(i) “high signal-to-noise ratio (SNR) without competing sound

events” and (ii) “low-SNR with competing sound events”. In the case

of “high-SNR without competing sound events” all frame selection

methods performed similarly well (Fig. 5), whereas the performance

was different for recordings with “low-SNR and competing sound

events” (Fig. 6).

In the high-SNR case, the ROI-based method selected only the

frequency bands with high energy, whereas the other methods pro-

duced “cleaned” spectrograms that look very much alike (Fig. 5).

By contrast, under noisy ambient conditions with competing sound

events the four methods performed differently and the frame se-

lection performance decreased considerably (Fig. 6). The proposed

method demonstrated good performance and selected frames only

of the dominant species. In the case of the GMM-based method the

noise from insects interfered with the frame selection, as the thresh-

old is configured to get the frames with highest energy relative to the

average energy. Likewise, with the syllable-based approach the high

energy of the insect sounds resulted in the selection of many frames,

but the duration of the selected areas was very short in comparison

with the other methods. Finally, the ROI-based method selected the

insect activity as the main region of interest, getting almost none of

the frames representing the dominant bird species.

5. Conclusion

Aiming to improve the audio parameterization process in bird

identification tasks, we propose an approach that incorporates robust

frame selection based on morphological filtering of the spectrogram
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Fig. 5. Comparison of frame selectionmethods after processing a recording with three

short bird call series under "high SNR without competing sound events" conditions:

(a) spectrogram of a test audio file that was downsampled to 24 kHz and high-pass

filtered; subsequently the recording was processed with (b) the proposed method, (c)

GMM-based frame selection, (d) syllable-based approach, or (e) the ROI-basedmethod.

Fig. 6. Comparison of frame selection methods under noisy ambient conditions with

competing animal sounds: (a) original spectrogram of a test audio file after downsam-

pling to 24 kHz and high-pass filtering; different sound events were tagged manually,

viz. (1) vocalization of dominant species, (2) sounds of several other bird species, (3)

acoustic emissions from insects, and (4) unidentified event. Subsequently the prepro-

cessed recording was analyzed with (b) the proposed method, (c) GMM-based frame

selection, (d) syllable-based approach, and (e) the ROI-based method.
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treated as an image. The robust frame selection shares common pro-

cessing steps with the MFCC parameter computation so the two algo-

rithms integrate well with only a small overhead. This approach and

the fact that MFCC parameters are computed only for a subset of se-

lected frames speeds up the overall computation of audio parameters.

Consequently we feed to the classification step only a subset of all

audio frames and the relative error rates are reduced. A comparative

evaluation based on a common experimental protocol demonstrated

the superior accuracy and time-efficiency of the proposed method,

when compared to GMM-based frame selection and two other re-

cent methods. The higher accuracy and lower processing time make

it more suitable for the needs of automated bird identification tasks

than the other methods tested. Other important aspects are its good

scalability to very large repositories of audio recordings containing

multiple species and especially the advantageous accuracy on real-

field recordings captured with different signal-to-noise levels. These

characteristics make the proposed method a good start for further

technological improvements that soon could facilitate the automated

monitoring of species-rich bird communities.

Compared to previous related work (Huang et al., 2009), where

syllabification of frog sounds were used for improving recognition ac-

curacy, we provided evidence that a non-syllabificationmethod could

perform faster and provide better accuracy on the task of bird iden-

tification from noisy field recordings. Furthermore, our audio param-

eterization with robust frame selection based on the morphological

filtering of the spectrogramhas the potential to improve recentmeth-

ods for acoustic recognition of bird species, such as those in Ganchev

et al. (2015), where a simple GMM-based acoustic activity detector

was used to discard portions of silence in the recordings.

The proposed audio parameterization method computes MFCC

parameters for the selected frames of the signal that has been resam-

pled to 24 kHz and high-pass filtered. No special noise reduction is

used in the process. Here wemake the implicit assumption that since

the frame selection is carried out on the spectrogram cleared through

morphological filtering, the selected audio frames correspond to au-

dio segments with prominent vocalizations. Evidently, this condition

is not always met for field recordings. To overcome this limitation

the proposed method could be combined with noise reduction tech-

niques, such as certain subband spectral subtraction-based methods

or similar methods affecting the spectral domain. We emphasize that

noise reduction in the spectral domain can be integrated in the fea-

ture extraction process with only a small increase of the overall com-

putational demand.

Among the potential applications that can benefit of the proposed

audio parameterization method are automated tools for indexing

bird sound recordings. Given the enormous amount of audio record-

ings collected by autonomous recording units, e.g. 6 TB per year for

recorders operated in 24/7 mode at sampling rates of 48 kHz and a

resolution of 16 bits, such a tool would largely speed up the data

analysis of biodiversity inventories and monitoring studies. The ad-

vantageous performance of the proposed method facilitates the in-

cremental improvement of technology, with the medium-term goal

of automated monitoring of indicator species and migratory birds in

the Brazilian Pantanal and beyond.
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