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ABSTRACT
Machine learning tools are widely used in support of bioacoustics 
studies, and there are numerous publications on the applicability of 
convolutional neural networks (CNNs) to the automated presence- 
absence detection of species. However, the relation between the 
merit of acoustic background modelling and the recognition per
formance needs to be better understood. In this study, we investi
gated the influence of acoustic background substance on the 
performance of the acoustic detector of the White-lored Spinetail 
(Synallaxis albilora). Two detector designs were evaluated: the 152- 
layer ResNet with transfer learning and a purposely created CNN. 
We experimented with acoustic background representations 
trained with season-specific (dry, wet, and all-season) data and 
without explicit modelling to evaluate its influence on the detec
tion performance. The detector permits monitoring of the diel 
behaviour and breeding time of White-lored Spinetail solely based 
on the changes in the vocal activity patterns. We report an advan
tageous performance when background modelling is used, pre
cisely when trained with all-season data. The highest classification 
accuracy (84.5%) was observed for the purposely created CNN 
model. Our findings contribute to an improved understanding of 
the importance of acoustic background modelling, which is essen
tial for increasing the performance of CNN-based species detectors.
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Introduction

Automated acoustic wildlife recognition is challenging due to numerous essential 
factors that cannot be controlled but are known to influence classification accu
racy significantly. Among these are the varying distance between the vocalising 
individual and the recording device, the singing direction of the target species to 
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the microphones, the simultaneous sound production of two or many species, the 
presence of concurrent sounds from other sources covering the same frequency 
band, the fast varying changes in the ambient noise level, the composition of 
environmental noise, and other variables (Pérez-Granados et al. 2019; Zor et al.  
2019).

Birds are the group of terrestrial taxa most commonly surveyed using auton
omous recording units (reviewed by Sugai et al. 2019), and several studies have 
used automated bird recognition through various machine learning (ML) meth
ods, such as hidden Markov models (HMMs) (Oliveira et al. 2015; Lasseck 2018), 
K-nearest neighbours (Tuncer et al. 2021), recurrent neural networks (Noumida 
and Rajan 2022), and deep learning (DL) (Hidayat et al. 2021). In the past five 
years, DL methods have been established as a helpful tool to support bird 
recognition efforts in bioacoustic and ecoacoustic studies (Stowell 2022). The 
advances in DL have contributed to the improved performance of automated 
species recognition, and presently, deep neural networks (DNNs) are perceived 
as the next best candidate for coping with the scalability problem in computa
tional bioacoustic technology.

The broader use of convolutional neural networks (CNNs) in recent years is primarily 
due to the availability of various open-source implementations and cheap computing 
resources. Recent advances in CNN-based modelling, including new architectures (Kim  
2017) with their enhanced ability to extract features automatically (Murphy 2016; Stowell  
2022); automatic feature detection (Tuncer et al. 2021); data augmentation (Knight et al.  
2020); combining features to allow the capability of distinguishing between valuable and 
not useful features (Stowell et al. 2019); and feature extraction to remove or minimise 
ambient noise impact (Florentin et al. 2020), contributed to addressing real-life problems 
that were considered intractable earlier.

Previous studies have investigated the impact of different training datasets on bird 
detection performance. For example, Adavanne et al. (2017) demonstrated the influence 
of considering different species, variable weather conditions, and habitat characteristics 
on algorithm performance. Concerning acoustic background variability, Knight et al. 
(2020) focused on background characteristics and the objects being detected to evaluate 
the application of distance sampling in the Australian wet tropics. Knight et al. (2020) 
focused on minimising the problem with multiple features for different training sets 
through generalisation. Nevertheless, other studies (Anderson et al. 2015) selected 
specific days of vocalisations instead of multiple data without prior knowledge to 
distinguish among different background sounds.

In the present work, we evaluate the impact of different acoustic background model
ling implementations on the performance of a species-specific CNN-based detector of 
White-lored Spinetail (Synallais albilora, Spinetail hereinafter) vocalisations. Specifically, 
we assessed the effect of using or not using representative seasonal recordings of the 
acoustic environment in two main setups: (i) reusing pretrained CNN models that were 
fine-tuned with transfer learning and (ii) creating a purposely trained detector with and 
without using season-specific soundscape recordings. We conducted experiments with 
datasets collected in the two primary season-specific environments (dry and wet) for that 
purpose. These were compared with implementations where blended dry and wet data 
were used, and explicit acoustic environment modelling was unavailable. In all 
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experiments, we evaluated the detection accuracy for Spinetail vocalisations in field 
recordings collected in the Brazilian Pantanal.

The remaining exposition is structured as follows: In the next section, we describe the 
biology and vocal behaviour of the Spinetail, the proposed tool, and its training process. 
Next, we have the experimental results of the influence of the acoustic background 
modelling and the Diel and seasonal pattern of acoustic activity. In the Conclusions 
section, we present our final considerations.

Materials and methods

Study species

White-lored Spinetail was selected as the target species because it is a common bird in 
our study area (Brazilian Pantanal, see next section), and there is very limited knowledge 
about its ecology (Rubio and Pinho 2008). The Spinetail shows a distribution range 
restricted to the Pantanal and the borders of Humid Chaco of Bolivia and Paraguay 
(Smith 2020). We therefore consider it interesting to improve our knowledge of the vocal 
behaviour of such a restricted range species. Spinetail usually inhabit gallery forests and 
scrublands near watercourses (Lowen and Bernardon 2010). The only detailed study of 
the species was also performed in the Brazilian Pantanal and focused on its breeding 
biology. The authors found that the peak of breeding activity occurred during October, 
which coincides with the onset of the rainy season in the Brazilian Pantanal, although 
active nests were found from late July to December (Rubio and Pinho 2008). The species 
utters two main vocalisation types: songs and calls (Figure 1). The primary vocalisation is 
the song, a sharp sound composed of two syllables, ‘pit-tuiii’, with the second note higher 
(Gwynne et al. 2010). The call of the species is a short sound composed of a unique 
syllable, ‘kiiiii’. The peak frequency of both vocalisations is approximately 2–3 kHz.

Study area and recording protocol

This study was performed in the northeastern part of the Brazilian Pantanal, near the 
SESC Pantanal (Serviço Social do Comércio, SESC, Poconé, Mato Grosso, Brazil; 16°30′S, 
56°25′W). The area is located within the floodplain of the Cuiabá River (Figure 2), which 

Figure 1. Spectrograms of White-lored Spinetail call (left) and song (right).
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is seasonally inundated during the wet season from October to April due to flooding of 
the Paraguay River. The dominant vegetation is a mosaic of different forest formations 
and savannas. The regional climate is tropical and humid, with a mean annual tempera
ture of approximately 24°C and an average annual rainfall of 1,000–1,500 mm (Junk et al.  
2006).

One Song Meter SM2 recorder (Wildlife Acoustics, www.wildlifeacoustics.com), 
which was equipped with two SMX-II omnidirectional microphones (sensitivity −36 ±  
4 dB, signal-to-noise ratio >62 dB, frequency response: flat 20 Hz − 20000 Hz) displaced 
at 180 degrees in the same plane, was used to capture the overall soundscapes. We 
recorded in the two-channel.wav format for the first 15 minutes of each hour (24 hours 
per day) with a sampling rate of 48 kHz and 16 bits per sample, storing data on the 
internal SD memory cards. The recorder was checked weekly to replace batteries and 
download data. In the current study, we used only the left channel of the SM2 recordings 
to reduce the amount of data and speed up processing. The SM2 was active from 
June 2015 to May 2016.

Datasets

We used four categories of audio recordings: (i) annotated excerpts of field recordings 
containing vocalisations of the target species, which we refer to as the Spinetail dataset 
hereafter; (ii) soundscape recordings, which do not contain the target species and which 

Figure 2. Location of the study area in Brazil and the detailed location of the recording site (yellow 
circle).
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we refer to as to acoustic background datasets; (iii) a collection of sounds of other bird 
species that are vocally active in the Pantanal area, which we refer to as the OtherBirds 
dataset; and (iv) two sets of soundscape recordings to evaluate the performance of CNN- 
based detectors or to study the acoustic activity of the Spinetail, which we refer to as the 
evaluation dataset and monitoring dataset. We summarise all datasets used in this study 
in Table 1.

Spinetail dataset
The Spinetail dataset is representative of the acoustic emissions of the target species and 
was used to train and validate the CNN models. It consists of 1683 short snippets with 
tagged vocalisations of the target species. These snippets are excerpts of field recordings 
manually cut from soundscape recordings collected with the SM2 device between 
December 2015 and May 2016. These vocalisations are distributed among three cate
gories: call (205 instances), the first syllable in a song (759 instances), and the second 
syllable in a song (719 instances). In total, there are approximately 10 minutes and 10  
seconds. The average duration of each snippet is 0.36 seconds, where the first syllable of 
a song has an approximate duration of 0.34 seconds, and the second has 0.37 seconds. 
The Spinetail calls (Figure 3) are slightly longer, with an approximate duration of 0.44  
seconds.

OtherBirds dataset
The OtherBirds dataset is a collection of nontarget sounds, which we used as negative 
examples during the training and validation of the CNN models to strengthen the 
selective capability of the Spinetail detectors. It consists of sound emissions of 40 bird 
species vocally active in the Pantanal area. Following Ventura et al. (2015), we retrieved 
recordings from the Xeno-Canto Archive (XENO-CANTO 2022). These were mainly 
processed excerpts from soundscapes or field recordings made with a narrow-angle 
directed microphone tagged for specific bird species. The OtherBirds dataset consists of 
1532 recordings that contain the vocalisation of at least one avian species different from 

Table 1. Summary of datasets in this study.

Dataset
Number of 

files
Cumulative 
duration (s)

Average file 
duration (s) Recording months Dataset usage

Spinetail-CALL 205 89.6 0.44 Dec 2015–May 2016 Train and 
Validation

Spinetail-SYL1 759 255.4 0.34 Dec 2015–May 2016 Train and 
Validation

Spinetail-SYL2 719 264.7 0.37 Dec 2015–May 2016 Train and 
Validation

BG-Wet dataset 8 2,271.5 283.9 Oct 2015–Feb 2016 Train and 
Validation

BG-Dry dataset 8 3,503.4 437.9 Jun-Aug 2015 Train and 
Validation

Other Birds 
dataset

1,532 46,109.3 30.1 Xeno-canto* Train and 
Validation

Evaluation 
dataset

22 19,761.1 898.2 Oct-Nov 2015 Detector 
Evaluation

Monitoring 
dataset

2,888 2,595,366.0 898.7 Jul-Oct 2015 Activity 
monitoring

Notations: CALL = call, SYL1 = first syllable of the song, SYL2 = second syllable of the song. *Recordings were extracted 
from Xeno-Canto.
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our target species (Figure 4). In some cases, the dominant vocalisations in these files were 
accompanied by sounds from other sources and contained episodes with a mixture of 
distant sounds from the environment. Here, we used these recordings ‘as is’, i.e. without 
further processing, because the ambient interference is negligible in their majority. 
Therefore, we consider the OtherBirds dataset representative of the bird species vocally 
active in the Pantanal area but not of the acoustic environment in which they were 
recorded. The cumulative duration of all recordings is approximately 12.8 hours, and the 
average duration of each audio file is approximately 30.1 seconds.

Datasets used for the acoustic background representation
The datasets used for the acoustic background representation are subsets of 
recordings that do not contain sounds of the target species (Figures 5 and 6), 
which were used as examples of the nontarget class to train the CNN-based 
detectors. These recordings are excerpts of soundscapes collected with the SM2 
device and were selected as representative of the acoustic environment of the 

Figure 3. Example of spectrogram obtained from audio recording of the Spinetail.

Figure 4. Example of a spectrogram obtained from audio recording from the OtherBirds dataset.
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study area – savanna and forest biomes during the dry and wet seasons. Each 
acoustic condition is represented by four soundscape recordings grouped by 
Pantanal seasonality. In the experiments, we consider two season-specific datasets: 
(i) the wet season background dataset, referred to as BG-Wet, which consists of 8 
soundscape recordings collected between October 2015 and February 2016, with 
a total duration of 2271.5 seconds and an average duration of approximately 283.9  
seconds; and (ii) the dry season background dataset, referred to as BG-Dry, which 
consists of 8 soundscape recordings collected between June and August 2015, with 
a total duration of 3503.4 seconds and an average duration of approximately 437.9  
seconds. In addition, we considered the combined dataset containing all 16 
recordings, with a total duration of 1 hour and 36 minutes. We refer to it as 
the Wet+Dry background dataset BG-Dry+Wet hereafter.

Figure 5. Example of a spectrogram obtained from an audio recording of a forest biome during the 
wet season.

Figure 6. Example of a spectrogram obtained from an audio recording of a savanna biome during the 
dry season.
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Evaluation dataset
The Evaluation dataset, which consists of soundscape recordings annotated for Spinetail 
vocalisations, was used to assess the efficiency of background representations depending 
on the season and the detector architecture and training. It consists of 22 SM2 sounds
cape recordings collected in the study area between October and November 2015. Each 
recording has a duration of 14 minutes and 55 seconds of audio, and the cumulative 
duration of the dataset is 5.49 hours. In 16 of these recordings, we observed the presence 
of Spinetail, and the remaining six contained sounds of various other species and sounds 
due to natural phenomena. We timestamped only the Spinetail vocalisations. These were 
used to evaluate the recognition performance of the CNN-based detectors with different 
background representations. Experimental results are discussed in the Influence of the 
acoustic background modelling section (see Discussion).

Monitoring dataset
The Monitoring dataset consists of soundscape recordings, which are not tagged. These 
were used to study the hourly and daily patterns of vocal behaviour of the Spinetail in the 
Pantanal area during different stages of its lifecycle. It consists of 2888 SM2 soundscape 
recordings collected for the first 15 minutes of each hour between July and October 2015, 
with a cumulative duration of over 720 hours of audio. The observed behaviour of the 
target species is discussed in the Discussion section Diel and seasonal pattern of acoustic 
activity.

CNN-based detector

All datasets were processed, following the common protocol outlined in the Audio 
processing section, to segment the audio into frames of equal sizes, which were subse
quently transformed into spectrograms. These spectrograms were treated as colour 
images and fed to the CNNs as described in sections Transfer learning-based CNN 
model and Purposely developed CNN architecture.

Spinetail audios with an average duration of 0.36 seconds were prescreened to estimate 
the minimum duration m recording in the dataset, which was 0.15 seconds. In the 
subsequent processing, we used only the first m seconds of each snippet in the 
Spinetail dataset.

The recordings in the OtherBirds dataset are of different lengths with an average 
duration of approximately 30.1 seconds, and they contain well-discerned sounds of 
various birds or background noise only. To reduce the chance of selecting noise-only 
segments from each of the OtherBirds recordings, we kept two snippets of m seconds, 
representing the initial 40%-60% of the audio.

The soundscape recordings from the wet and dry season background datasets were 
segmented into 500 snippets with a duration of m seconds each.

The soundscape recordings from the evaluation and monitoring datasets were seg
mented and evaluated every m seconds.

Audio processing
Once the audio frames with equal duration were obtained, the spectrogram was com
puted through a 512-point Fast Fourier Transform. Considering the sampling rate of 48  
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kHz, we used a Hamming window of 480 samples sliding with overlaps of 360 samples. 
From the spectrogram, we selected the frequency range [3 kHz, 4 kHz] as it was experi
mentally found to be advantageous after an extensive investigation of various subbands. 
This specific frequency range conveys the critical portion of the Spinetail calls spectrum 
and most of the energy of its song sounds.

In general, the Spinetail vocalisations cover the frequency range of 1 kHz − 10 kHz, 
which overlaps with the sounds of other bird species (Zhao et al. 2019) and many other 
animals. However, using the frequency range of [3 kHz, 4 kHz], we retained most of the 
information for Spinetail sounds while inhibiting most of the background noise. The 
magnitude spectrogram of the selected frequency subband was used as a colour image fed 
into the CNN input.

Transfer learning-based CNN model
Training machine learning models is a complex and time-consuming process. In differ
ent scenarios, it is necessary to use a larger dataset and adjust the model’s parameters to 
be able to be used outside the training environment. A common method to minimise 
these problems is transfer learning, which consists of using a pretrained set of weights to 
adapt to the target task. Commonly, the weights of the models are trained with a large 
dataset, reducing the time necessary to look for an architecture and set of parameters for 
the specified dataset (Diment and Virtanen 2017).

The success of ResNet-based transfer learning in acoustic presence-absence detection 
for various animal species (e.g. Shiu et al. 2020; Ruan et al. 2022) encouraged us to 
evaluate this approach in recognising Spinetail vocalisations. In the present study, we 
used transfer learning in the model 152-layer ResNet (He et al. 2016), which was known 
to be trained with a considerable volume of data from the Imagenet Database and is 
reportedly capable of classifying various types of data, including bird sounds (Kahl et al.  
2017).

The ResNet-152 model was initially trained with colour images (He et al. 2016). In the 
current research, we used a learning rate of 0.001 with the Adam optimiser for 30 epochs. 
We kept the colour image setup since it was reported to be more advantageous than other 
setups that rely on species recognition based on greyscale spectrograms (Dufourq et al.  
2022).

In the following, we consider the soundscape spectrograms as a colour image, with 
a resolution of 224 × 224 pixels, represented by RGB-colour channel images. Once the 
spectrograms were computed, we fed them into the ResNet-152 model and froze the 
weights of all layers except the output layer adapted to our classes and the proposed 
model.

Purposely developed CNN architecture
We trained a CNN-based detector for Spinetail, using all datasets and audio preproces
sing described above. The proposed CNN has six trainable layers, including four con
volutional layers, one fully connected layer with Swish, and an output softmax layer 
(Figure 7). This CNN architecture was obtained after extensive experimentation with 
combinations of convolutional, pooling, and dropout layers to avoid overfitting. The 
experimentation was focused on either modifying the layers or incrementing the layers, 
concerning the number of layers and processing units at each layer (e.g. 2 convolutional 
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with 64 feature maps or 1 convolutional with 128 feature maps), and activation functions 
(e.g. Hyperbolic Tangent, ReLU, and Swish) to extract the spectrogram’s main charac
teristics. The dense final layer was trained to make the classification.

The first convolutional layer contained 64 filters with a kernel size of 3 × 3, followed by 
a pooling layer of size 2 × 2, which slides every two frames, acquiring the maximum 
number for each window. We applied a 1-D convolution instead of 2-D convolutional 
layers when classifying or identifying birds, which is a common approach similar to that 
in Lasseck (2018) and Kiranyaz et al. (2019). In the drop-out layer that follows, 10% of the 
weights are dropped by forcing their value to 0. The subsequent convolution and pooling 
layers use 256, 256, and 64 filters. Despite the identical number of filters and size of 
windows, the next convolutional and pooling layers do not pad the data; thus, the data 
dimensions remain unchanged. Finally, the output of the fourth pooling layer is flattened 
to a fully connected layer of 512 units and a dense final layer for classification in eight 
classes. This is implemented as a softmax layer so that it outputs eight values that 
represent the probability for each class defined above – four for the acoustic background 
(savanna wet, savanna dry, forest dry, forest wet), three for the Spinetail vocalisations 
(call, first syllable of the song, and second syllable of the song), and category OtherBirds, 
which represents the sounds of other typical bird species for the same region that were 
expected to inhabit or migrate through the studied area. This approach is helpful because 
it provides additional information that allows us to distinguish different vocalisations of 
the Spinetail and different acoustic contexts. The latter may be helpful when processing 
unlabelled recordings, for which it is not apparent during which seasons were recorded, 
in which biome, and whether the acoustic presence-absence of Spinetail occurs together 
with the presence-absence of any other bird species.

Figure 7. The proposed CNN architecture is tuned to detect the acoustic activity of White-lored 
Spinetail.
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Experimental protocol

Since the present study focuses on evaluating the merit of the acoustic background 
representation, in the following, we consider the CNN-based detector a binary classifier 
with two possible outcomes of the detection process: either Spinetail acoustic activity was 
detected or not. Thus, we introduce the postprocessing of the CNN output to obtain in 
one category any of the Spinetail vocalisations (call, first syllable of the song, and second 
syllable of the song) and every other sound (OtherBirds and acoustic background) to 
verify whether a Spinetail vocalisation was detected.

The CNN-based detectors were trained in four setups using different subsets of audio 
to model the acoustic background: (i) using only season-specific background data, which 
resulted in independent wet and dry season models; (ii) combining the available data 
from both seasons; and (iii) no explicit acoustic background modelling.

Data augmentation was used before the training by decreasing the linear magnitude of 
each audio recording at a random rate of 40%-60%, duplicating the data in the train
ing set.

The performance of the CNN detectors was evaluated in terms of accuracy 
(Equation. 1), precision Equation. 2), and recall (Equation. 3), where TP is the number 
of accurate detections, FP is the number of false positives, FN is the number of false- 
negatives, and N is the total number of instances. 

Considering the binary presence-absence detection setup, we also generated detection 
error tradeoff (DET) curves due to the capability to evaluate the tradeoff between false 
alarms and miss probability errors (Martin et al. 1997). The DET curves were also used to 
compute the optimal decision cost point (DCTopt) for each CNN detector, which is the 
equilibrium point of the curve metric between high miss probability and high false alarm 
probability. For this metric, lower values indicate better performance.

Table 2. Performance of the proposed CNN- and ResNet-152-based detectors for different training 
configurations.

Model

Accuracy (%) Precision (%) Recall (%)

no- 
BG

BG- 
Wet

BG- 
Dry

BG-Wet 
+Dry

no- 
BG

BG- 
Wet

BG- 
Dry

BG-Wet+ 
Dry

no- 
BG

BG- 
Wet

BG- 
Dry

BG-Wet 
+Dry

Proposed 
CNN

81.2 76.9 80.2 84.5 40.8 34.7 39.3 48.4 55.4 61.3 58.6 50.4

ResNet-152 83.7 83.8 49.9 80.0 35.3 25.4 17.2 20.6 9.9 4.1 61.1 11.7
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Results

The evaluation results for different detectors were performed with continuous audio 
recordings containing 15-minute soundscapes. Table 2 shows the performance of the 
models for various background modelling setups for the acoustic detectors based on the 
proposed CNN architecture and ResNet-152 model with transfer learning.

We generated the DET curves (Figure 8) to better understand better the potential 
usefulness of the different CNN-based models independent of the selected FA-miss 
tradeoffs (false alarm in the X-axis and miss probability in the Y-axis). Each plot’s red 
circle and blue triangle indicate each detector’s optimal decision cost point, DCTopt. The 
optimal decision cost points in all setups, which were computed following Martin et al. 
(1997), are shown in Table 3.

Figure 8. DET plots for the White-lored Spinetail detector when implemented with ResNet-152 (red 
colour) and the proposed CNN architecture (blue colour). The plots show results with (a) no explicit 
background modelling, no-BG; (b) wet season data alone, BG-Wet; (c) dry-season data alone, BG-Dry; 
and (d) combined wet+dry season data, BG-Wet+Dry.
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Finally, to describe the diel and seasonal acoustic activity patterns of Spinetail, we used 
the detector results obtained with the proposed CNN architecture that was trained with 
the combined BG-Wet+Dry background dataset because of its advantageous precision. 
We analysed the diel and seasonal patterns of the Spinetail for several months, covering 
the wet season of 2015, by (i) using all detections made by our model (Figure 9) and (ii) 
converting linear magnitude spectrograms to db-scaled spectrograms using only those 
detections with the strongest signals, i.e. amplitudes with positive dB in this case 
(Figure 10). Vocalisations with lower amplitudes were not consistently detected due to 
the floating ambient noise level.

Table 3. Actual optimal decision cost value, DCTopt, for ResNet-152 and the 
proposed CNN in the different setups. The lowest optimal decision cost value 
for each architecture is shown in bold font.

Model

DCTopt

no-BG BG-Wet BG-Dry BG-Wet+Dry

ResNet-152 0.652 0.725 0.709 0.721
Proposed CNN 0.454 0.452 0.435 0.432

Figure 9. White-lored Spinetail (S. albilora) detections: (a) hourly and (b) daily activity patterns.

Figure 10. Positive dB diurnal White-lored Spinetail (S. albilora) detections: (a) by the hour and (b) 
by day.
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Based on the results shown in Figures 9 and 10, in both cases, the hourly detections of 
Spinetail showed a double peak of vocal activity, one around sunrise and a second lower 
peak around sunset. The main difference between both approaches (considering all 
detections and only those with positive dB) was found during the nocturnal period. 
There were a large number of nocturnal detections when considering all detections, while 
almost no nocturnal detections occurred when considering only detections with positive 
dB. The seasonal pattern of detections was also similar following both approaches. Based 
on all detections, we observed the maximum vocal activity during the first fortnight of 
July, a small peak around mid-September, and high and constant vocal activity during 
October (Figure 9). The peak of detections around mid-September was minimised when 
we only analysed the detections with loud signals (Figure 10).

Discussions

Influence of the acoustic background modeling

We observed higher detection accuracy and precision for the proposed CNN architecture 
when using the combined BG-Wet+Dry datasets to model the acoustic background 
(Table 2). This combination provides more data for training, contributing to the model’s 
performance. This combination also increases the imbalance between classes, although 
there is also an imbalance in other combinations, which may explain the lower 
performance.

Both metrics decreased when tested with no explicit background modelling, no-BG, or 
only soundscapes from one of the seasons. Meanwhile, the recall probability of detecting 
the Spinetail vocalisations increased in these cases, i.e. the proposed CNN architecture 
improved the recall values when trained with season-specific background data: BG-Wet 
and BG-Dry.

Despite the observed inferior performance, when trained with different subsets of 
background data, the ResNet-152 model improved the overall performance when not 
using the acoustic background datasets. When the background datasets BG-Wet and BG- 
Dry were used alone, we observed dissimilar performance: BG-Dry had lower error rates 
in precision.

Based on the DCTopt scores (Figure 8 and Table 3), we observed that in all setups, the 
proposed CNN architecture provides lower values for the optimal decision cost function 
and, therefore, outperformed the detector based on ResNet-152 with transfer learning.

The behaviour of the presence-absence detector based on the proposed CNN archi
tecture shows the highest DCTopt, i.e. the lowest performance, for the case with no 
explicit background modelling. In contrast, when no explicit modelling of the acoustic 
background was used, the ResNet-152-based detector showed the lowest optimal deci
sion cost, i.e. the highest decision performance. This result can be explained by the 
differences in the architecture of these models and the datasets used for training. The 
ResNet-152-based detector model has more layers and must be trained with more data, 
even when applying transfer learning. Background modelling makes the problem harder 
and requires additional data. Thus, it was observed that for the ResNet-152-based 
detector, additional training with background data is not beneficial.
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Analysing the detection scores concerning their deviation from the normal distribu
tion, we observe (Figure 8) that the ResNet-152 curves are far too distant from a straight 
line, i.e. they do not adhere to the normal distribution of probabilities. The latter makes 
the detector’s behaviour less predictable and more challenging to understand and trust. 
We observed that the output scores roughly followed the normal distribution in all setups 
for the proposed CNN architecture. The latter is evident in the less-curved DET plots 
compared to ResNet-152. The season-specific explicit background modelling with the 
combined wet + dry dataset, BG-Wet+Dry, improved the detector behaviour predict
ability because the observed output probabilities were closer to the expected normal 
distribution.

Diel and seasonal pattern of acoustic activity

The double approach employed in our study (using all detections or only those with 
positive dB) provided similar diel and seasonal patterns of vocal activity of the species. 
Nonetheless, we found slight differences, especially during the nocturnal period, when 
few detections occurred when considering only detections with positive dB. These 
findings suggest the possibility that several false positives may have occurred when 
considering all detections in our dataset. These results are in agreement with prior 
research that already proved a negative relationship between the sound level of the 
desired signal and the accuracy of the CNNs. Overall, the observed vocal activity of the 
target species was maximum during the first hours after sunrise and close to sunset, 
consistent with the typical bimodal pattern of vocal activity described for most passerines 
(Catchpole and Slater 2008; Gil and Llusia 2020). When we only considered those 
detections with loud signals, the diel pattern of vocal activity was almost completely 
restricted to the daytime and with much-reduced activity during the central hours of 
the day. We found that the seasonal pattern of vocal activity of the species showed two 
peaks separated by approximately one month and a half. This observation is consistent 
with the multi-brooded character of the Spinetail (Rubio and Pinho 2008), since it may 
indicate two breeding attempts in early July and early October. The silent interval in 
between it may be related to the incubating, nestling, and fledging periods when 
passerines’ vocal activity is usually reduced (e.g. Lampe and Espmark 1987; Amrhein 
et al. 2002). Our findings provide the first description of the vocal behaviour of the 
Spinetail. We are aware that our results are based on a single locality and use data 
collected during a limited period. Therefore, further research is needed before drawing 
any broad conclusions about the vocal behaviour of the Spinetail.

Conclusions

Contrary to the intuitive expectation that the extra effort invested in correctly 
representing the acoustic background environment will improve performance, our 
results demonstrated that the CNN-based detector behaviour depends on the 
model creation approach. The CNNs trained in environmentally richer contexts 
that combine wet and dry season recordings were observed to outperform the 
detectors trained with season-specific background data or without background 
modelling. When the bird detector is based on pretrained CNNs fine-tuned with 
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transfer learning, the highest classification accuracy is observed without season- 
specific adaptation. Here, only one species (Spinetail) was evaluated in a single 
region. As much as data from different climatic periods were used for detector 
training, only two months in the year were used for model evaluation. 
Nevertheless, the experimental results indicate the importance of background 
modelling for obtaining a good bird detector. In this research, we depended on 
the assumption of using OtherBirds recordings free of ambient noise and thus did 
not interfere with the wet and dry acoustic environments. This holds for most 
Xeno-Canto data; however, it must be considered when other sources of negative 
examples are used.

The best result was observed with the proposed CNN model trained with all-season 
data. We observed an improvement in recognition accuracy (an increase of 3.3%) and 
precision (an increase of 7.6%) in exchange for a decrease in recall (of 5%). The CNN- 
based detector enabled us to study the vocal behaviour of the Spinetail for several months 
during the wet season and analyse the diel and seasonal patterns of its acoustic activity for 
the first time.

The acoustic detector used in this study provides the means for further research on the 
vocal behaviour of the neotropical White-lored Spinetail. Next, we aim to process the 
bulk of Pantanal recordings with wider spatial and temporal coverage to gain deeper 
insights and a conclusive understanding of the Spinetail species behaviour.

Finally, further research on acoustic background modelling is needed to advance the 
passive acoustic monitoring methods and technology, primarily for handling regional 
and seasonal variabilities in acoustic environments, as these impose the main challenge to 
the automated acoustic detection of sound emitting species.
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