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BirdNET is a popular machine learning tool for auto-
mated recognition of bird sounds. However, evidence on
how to optimize its settings for accurate bird monitoring
remains limited. Here, we evaluate how BirdNET set-
tings influence model performance in identifying bird
vocalizations and characterizing bird communities, using
4224 1-min recordings from 67 recording locations
worldwide. Giving equal importance to recall and preci-
sion, a low confidence score threshold (0.1-0.3) appears
optimal for detecting bird vocalizations, whereas higher
thresholds (around 0.5) are more suitable for character-
izing bird communities. Based on our findings, we rec-
ommend increasing the Owverlap parameter from its

A global assessement of BirdNET settings 3

default value of Oto 25, as this consistently improves
BirdNET performance in detecting both bird vocaliza-
tions and species presence. The effect of the Sensitivity
parameter varied across regions. However, a value of 0.5
maximizes global performance for community-level ana-
lyses across all confidence thresholds, and a value of 1.5
generally yields better results for vocalization-level stud-
ies, particularly at low confidence thresholds. Our find-
ings offer practical guidance for selecting BirdNET
settings in passive acoustic bird surveys, enhancing both
the identification of bird vocalizations and the character-
ization of bird communities.

Keywords: automated detection, bird monitoring,
convolutional neural networks, machine learning,
novel communities, passive acoustic monitoring.

Passive acoustic monitoring (PAM) is a non-invasive,
automated method extensively used for bird monitoring
(Darras et al. 2019, Pérez-Granados & Traba 2021). A
key advancement in this field has been the development
of machine learning and deep learning algorithms for the
automated identification of bird vocalizations (Stow-
ell 2022, Xie et al. 2023), with BirdNET being among
the most widely used software (Kahl et al. 2021, Pérez-
Granados 2023). BirdNET is based on a convolutional
neural network, capable of identifying over 6500 bird
species worldwide  (https://github.com/birdnet-team/
BirdNET-Analyzer). BirdNET divides recordings into 3-s
segments and generates multispecies predictions of spe-
cies presence for each segment. Each prediction is
assigned a quantitative Confidence score from 0.01 (low
model certainty in the identification) to 1 (very high
model certainty), allowing users to filter BirdNET out-
puts based on a confidence score threshold. Setting a
low confidence score threshold minimizes the risk of
false negatives (i.e. missed detections) but increases the
likelihood of false positives (i.e. mislabelled detections),
and vice versa for a high confidence threshold (Wood &
Kahl 2024).

In addition to the Confidence score threshold, Bird-
NET allows users to adjust two other parameters: (1)
Overlap (range: 0-3s), which controls the degree of
overlap between consecutive 3-s segments, and (2) Sen-
sitivity (range: 0.5-1.5), which modulates the spread of
Confidence scores: Sensitivity values less than 1 increase
the model’s certainty in its top predictions and decrease

*Corresponding author.
Email: cristian.perez@ctfc.cat
Twitter id: @MorantJon

Cristian Pérez-Granados and David Funosas contributed equally
to the study.
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its certainty in the bottom predictions, whereas values
greater than 1 make confidence scores more uniform
across predictions. In summary, low Confidence score
thresholds combined with high Overlap and Sensitivity
values maximize the recall rate, i.e. the proportion of
vocalizations detected among those present in a record-
ing, to the detriment of precision, i.e. the proportion of
vocalizations correctly identified by BirdNET. As a
result, an inherent trade-off emerges between recall and
precision (Funosas et al. 2024).

Although previous research has explored the impact
of adjusting the input values of BirdNET parameters
(Wood et al. 2023, Funosas et al. 2024), evidence on
optimal settings for automated bird monitoring remains
scarce. BirdNET performance varies significantly across
species and environmental contexts (Funosas et al. 2024,
Pérez-Granados 2025). Large-scale research is therefore
needed to define parameter settings that optimize moni-
toring outcomes for bird monitoring using BirdNET. To
address this gap, we provide a comprehensive evaluation
to identify the best set of settings — at both vocalization
(i.e. the best settings to correctly classify a specific vocal-
ization within a recording) and dataset (i.e. the best set-
tings to correctly identify the species appearing in a
collection of recordings from the same study area) levels
— to optimize the balance between BirdNET precision
and recall. Data at the vocalization level are helpful
when it is important to know the exact moment within
a recording when a species is vocally active (e.g. for
studies on bird activity patterns), whereas data at the
dataset level may be useful for studies aiming to obtain
a list of species from a study area. To achieve this, we
analysed 4224 1-min audio recordings collected from 67
recording locations across six continents, comprising a
total of 89061 bird vocalizations — all identified and
annotated by expert ornithologists. We hope our results
will guide future studies in determining optimal parame-
ter settings and support the continued refinement of
BirdNET, both for ecological monitoring of bird species
and for the characterization of novel bird acoustic com-
munities (sensu Hartig et al. 2024).

METHODS

Soundscape collection

The analysed soundscapes are part of the World Anno-
tated Bird Acoustic Dataset (WABAD, Pérez-Granados
et al. 2025). These recordings were annotated at the
vocalization level by local experts. For consistency
across datasets, our analyses included all recordings
from the 67 recording locations in WABAD with anno-
tations providing the exact start and end times for each
bird vocalization present in the recording (see Audio
annotations section). The five recording locations with

© 2025 British Ornithologists’ Union.

annotations lacking exact start and end times were
excluded from this study, as such labels are unsuitable
for vocalization-level analyses. Most of the data were
collected in the northern hemisphere (mainly from
Europe and North America). Nonetheless, the database
includes data from six continents, with several record-
ing locations in Central and South America but low
representation from Africa, Asia and Oceania (Fig. 1).
In total, we analysed 4224 1-min recordings collected
at 67 recording locations (Fig. 1). We provide detailed
information (e.g. recording location, minutes annotated
per location, geographical coordinates, biome, recorder
used) for each recording site in Table S1. The record-
ings and annotations used in this study are publicly
available. For access and further details, see Pérez-
Granados et al. (2025).

Audio annotations

Expert ornithologists familiar with the local avifauna
examined each 1-min audio recording spectrogram and
identified every single bird vocalization at the species
level. All annotations followed the Clements Checklist
(Clements et al. 2021), which guarantees taxonomic
alignment with the nomenclature used in BirdNET. The
experts annotated each vocalization using bounding
boxes: the start and end points of the box (x-axis) mark
the duration of the sound and the top and bottom
boundaries (y-axis) indicate its frequency range (lowest
to highest). Two vocalizations from the same species
could be included in the same box when they were sep-
arated by less than 1s; otherwise, a separate annotation
was made. The coordinator of each recording location
ensured that audio annotations met the criteria specified,
with a subset of the files of each recording location
(c.30%) being double-checked by the WABAD coordi-
nators. All labels included in that study were reviewed
by a single observer, with no formal inter-observer vali-
dation. A detailed description of the annotation process,
along with all audio annotations, can be found in Pérez-
Granados et al. (2025).

BirdNET settings

We  analysed the  recordings by  running
BirdNET-Analyser v2.4.0 (model BirdNET_GLO-
BAL_6K_V2.4_Model_FP32.tflite) with varying input
parameter values via a Linux shell script interfacing with
the algorithm’s Python codebase, following Funosas
et al. (2024). We processed the data with the default
minimum Confidence score threshold of 0.1 and nine
value combinations of Overlap (0, 1 or 2s) and Sensitiv-
ity (0.5, 1.0 or 1.5), spanning the respective parameter
ranges of 0-3s and 0.5-1.5. We configured BirdNET to
filter the list of potentially detectable species based on
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Figure 1. (a) Global mapping of 67 recording locations considered in the study. Colours and sizes of circles refer to the number of
minutes annotated per recording site. The small circles show the location of recording locations in Europe and Central America. (b)
Number of minutes annotated per location. Colours of the recording locations in this panel refer to different regions, with the total
number of minutes annotated per location provided in parentheses. *Although Hawai'i is part of the USA, we classified it separately
within the Oceania region based on biogeographical criteria.

the following criteria: (1) recording site location (following Funosas et al. 2024), which defines the lowest
(Table S1), (2) recording date (week of the year) and regional and temporal occurrence frequency a species
(3) a minimum occurrence frequency threshold of 0.02 must have to be included in BirdNET’s list of potentially
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detectable species (range 0.01-0.99). BirdNET-Analyser
v2.4 uses eBird checklist frequency data to estimate the
range of bird species and the probability of their occur-
rence given coordinates and week of the year (see
https://github.com/birdnet-team/BirdNET-Analyzer/

discussions/234). A low threshold (as in our study)
broadens the list of potentially detectable species, as it
includes those with low likelihoods of occurrence,
whereas a higher threshold limits the list to species with
the highest expected occurrence based on eBird data.

BirdNET assessment

We assessed BirdNET performance across the nine com-
binations of settings by comparing model predictions
with the annotations made by experts through a series
of custom R scripts (version 4.2.2; R Core Team 2025)
that (1) categorize BirdNET predictions according to
their correctness, (2) compute performance metrics
based on this categorization, and (3) generate corre-
sponding summary tables and plots. The scripts have
been adapted from and can be accessed at Funosas
et al. (2024). The assessments were conducted at two
levels: (1) vocalization level, providing a fine-grained
picture of BirdNET’s ability to correctly detect and iden-
tify individual bird vocalizations; and (2) dataset level,
offering insight into BirdNET’s ability to characterize
the composition of bird communities based on a collec-
tion of recordings from the same location. BirdNET pre-
dictions were categorized into four possible outcomes
(Fig. S1):

e True positives (TP): At the vocalization level, a Bird-
NET prediction was classified as a TP when an
expert labelled the same species at the same time
(see definition below). At the dataset level, a bird
species was considered a TP when there was at least
one correct identification of that species by BirdNET
in any of the recordings from the same dataset (i.e.
recording location).

e False positives (FP): At the vocalization level, a Bird-
NET prediction was classified as an FP when an
expert did not detect the same species at the same
time. At the dataset level, a bird species was consid-
ered an FP when all BirdNET predictions of that
species in the dataset were incorrect.

e True negatives (TN): A prediction was classified as a
TN when a vocalization or species not identified by
the expert was also not predicted by BirdNET, at
either the dataset or vocalization level at the same
time.

e False negatives (FN): A prediction was classified as
an FN when a vocalization or species identified by
the expert was not predicted by BirdNET at the
same time.

© 2025 British Ornithologists’ Union.

Following the above categorization criteria, we evalu-
ated BirdNET precision, recall and false-positive rate
(FPR) at both vocalization and dataset levels. Precision is
defined as the proportion of species or vocalizations cor-
rectly predicted relative to the total number of species or
vocalizations predicted by BirdNET. The recall rate mea-
sures the proportion of species or vocalizations correctly
predicted relative to the total number of species or vocali-
zations present in the recording (Pérez-Granados 2023).
The FPR measures the likelihood of BirdNET falsely iden-
tifying an absent species as present. These three metrics
were estimated using 90 different minimum confidence
thresholds (from 0.1 to 0.99 with a step of 0.01; Funosas
et al. 2024). Analyses at the vocalization level compare
BirdNET predictions within 3-s segments to expert anno-
tations, whereas dataset-level assessments match
expert-annotated species lists to BirdNET-predicted spe-
cies, counting only correct matches (i.e. instances where a
BirdNET prediction temporally overlaps with an expert
annotation of the same species). At the vocalization level,
recall and FPR were calculated by pooling all BirdNET
predictions that overlapped with a given vocalization (i.e.
those ending after its onset or beginning before its offset),
and precision was calculated by pooling all manual anno-
tations that overlapped with each prediction segment
using the same criterion. The specific formulae used to
calculate precision, recall and FPR are the following:

Precision =TP/(TP + FP)
Recall=TP/(TP + FN)
FPR =FP/(FP + TN)

The three metrics were calculated at each level of analy-
sis: vocalization and dataset. It is essential to note that,
according to our categorization criteria, a single correct
prediction of a species by BirdNET was sufficient for the
species to be considered a true positive at the dataset
level, thereby favouring higher recall results in datasets
of longer duration. The values obtained for the preci-
sion, recall and FPR metrics were used to plot the
Precision—Recall (PR) and receiver operating characteris-
tic (ROC) curves, both accompanied by an estimation
of the area under the curve (AUC; Davis & Goa-
drich 2006, Knight et al. 2017). The PR curve plots pre-
cision against recall for each minimum confidence
threshold considered, illustrating the trade-off between
these two metrics. Similarly, the ROC curve plots recall
against the FPR for each minimum confidence threshold,
revealing the trade-off between these two metrics as
well. For both curves, the AUC serves as a measure of
the algorithm’s predictive power, with values ranging
from O to 1, where higher values indicate greater predic-
tive power.
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The AUC of PR integrates precision across the entire
recall range, meaning that extending this range — even
toward lower recall values — can increase the total area
under the curve. Consequently, a PR curve with a
broader recall range can have a higher AUC than one
with a narrower range, even if the latter maintains
higher precision at every overlapping recall level. The
same principle applies to AUC of ROC scores and FPR
ranges. Higher Sensitivity values are associated with
greater variability in both recall and FPR scores across
confidence levels, resulting in a broader range of recall
and FPR values compared with those obtained with
lower Sensitivity values (Fig. S2). Hence, to ensure com-
parability across different Sensitivity values, PR AUC
was adjusted for the recall range and ROC AUC for
FPR range using the following formulae:

' B PR AUC
adj PR_AUC= — ax(recall)—min(recall)
wdi ROC_AUC— ROC AUC

max(FPR)—min(FPR)

Additionally, we estimated the Fl-score, which evaluates
an algorithm’s predictive power by integrating both pre-
cision and recall (Knight et al. 2017), across 90 Confi-
dence score thresholds (from 0.10 to 0.99). The formula
used was the following:

F—score = (l + ﬁz) X precision
x recall/ (Bz X precision + recall)

For consistency and to facilitate comparisons with other
studies, we computed the Fl-score, i.e. the F-score with
a B equal to 1, assigning equal importance to precision
and recall. Fl-score values range from O to 1, with
higher Fl-score values indicating a better model perfor-
mance (i.e. a value of 1 represents perfect precision and
recall).

RESULTS

Optimizing BirdNET parameters at the
vocalization level

Both the Overlap and the Sensitivity values impacted
BirdNET performance at the vocalization level (Table 1).
The AUC scores for the PR curves evaluated globally
across all datasets consistently increased with higher
Overlap values at each specific Sensitivity score. In fact,
the improved BirdNET performance at the vocalization
level when using an Overlap of 2 was consistent within
and among regions (Table 2) as well as among biomes
(Table S2). We also found that a Sensitivity value of 0.5
yielded the highest PR AUC scores across the three
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Overlap values considered. However, the influence of
Sensitivity on PR AUC scores seems to be substantially
less robust than that of Overlap. Our results also show
that, at the vocalization level, the PR AUC score was
maximized with an Overlap of 2 and a Sensitivity of 0.5
(Table 1, see results at recording location level in
Table S3). However, the optimal Sensitivity value for
maximizing PR AUC scores varied across biogeographi-
cal regions, being 0.5 in three regions and 1.5 in the
other three (Table 2). Regarding the AUC scores for the
ROC curves, the largest differences appeared between
the Sensitivity values of 1.0 and 1.5, with the latter
yielding the lowest ROC AUC scores for the three
Overlap values analysed (Table 1). The highest ROC
AUC score was obtained with an Overlap of 2 and a
Sensitivity of 1 or 0.5 (Table 1).

Optimizing BirdNET parameters at the
dataset level

At the dataset level, Sensitivity had the strongest influ-
ence on BirdNET performance. Under all Overlap
values considered, the highest PR AUC scores were
obtained using a Sensitivity of 0.5, with large differences
across Sensitivity values (Table 1). This result is consis-
tent across different geographical regions, with all
regions reaching their highest PR AUC scores at a Sensi-
tivity of 0.5 (see also the high degree of consistency
within regions and among biomes of the optimal Sensi-
tivity value in Table 2 and Tables S2 and S3). The
impact of Overlap on the PR curve was small, but
higher PR AUC scores were obtained at the dataset level
when using higher Overlap values. The combination of
settings maximizing PR AUC consisted of an Overlap of
2 and a Sensitivity of 0.5 (Table 1), which was consis-
tent in four of the six regions analysed (Table 2).

Regarding the ROC AUC scores, we found small dif-
ferences between the different groups of settings tested.
Nonetheless, the lowest ROC AUC scores corresponded
to a Sensitivity of 0.5 at any given Overlap value. Dif-
ferences in ROC AUC scores across Overlap values
were small and variable. However, the highest ROC
AUC score across all regions was achieved with an
Overlap of 0 and a Sensitivity of 1.5.

F1-score curves: impact of confidence score
threshold

The Fl-score curves showed that BirdNET performance
remained relatively consistent across the three Overlap
settings at both vocalization and dataset levels (Fig. 2).
However, at the vocalization level, performance showed
a slight overall improvement as Overlap increased. In
contrast, Sensitivity had a substantial impact on Bird-
NET performance at both levels. The effect of the

© 2025 British Ornithologists’ Union.
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Table 1.Area under the curve (AUC)

AUC values scores for both Precision-Recall (PR)
and receiver operating characteristic
Overlap Sensitivity ~ Vocal_PR Vocal_ROC Dataset_PR Dataset_ROC  (ROC) curves using nine combinations of
values for the Overlap and Sensitivity set-
0 0.5 0.102 0.083 0.342 0.119 tings. The results shown have been
0 1 0.092 0.085 0.238 0.135 obtained with the default minimum Confi-
0 1.5 0.099 0.070 0.138 0.156 dence score threshold (0.1). Results are
1 0.5 0.120 0.085 0.369 0.124 presented at the vocalization and dataset
1 1 0.109 0.089 0.260 0.136 levels. The best results are highlighted
1 15 0.118 0.069 0.141 0.152 in bold.
2 0.5 0.155 0.090 0.380 0.130
2 1 0.138 0.091 0.262 0.148
2 1.5 0.151 0.065 0.153 0.150

Table 2. Continent-specific optimal Overlap and Sensitivity settings for BirdNET-Analyser to maximize area under the curve (AUC)
scores for the Precision—-Recall (PR) curve. Nine combinations of settings — three levels of Overlap between consecutive predictions
(0, 1 and 2s) and three Sensitivity values (0.5, 1 and 1.5) — were evaluated using a minimum Confidence score threshold of 0.1. To
measure model improvement, we report the variation (A) in AUC scores for both PR and receiver operating characteristic (ROC)
curves between the best-performing settings for PR AUC optimization and the default settings (Overlap = 0, Sensitivity =1). Finally,
the number and percentage of regional datasets converging on the same optimal settings are presented for each region. Results are

presented separately for vocalization-level and dataset-level analyses.

Cross-dataset

Analysis Overlap A A Cross-dataset convergence on
level Region (s) Sensitivity PR_AUC ROC_AUC convergence on Overlap  Sensitivity
Vocalization Africa 2 0.5 0.020 0.029 4/4 (100%) 1/4 (25%)
Asia 2 1.5 0.026 0.005 3/3 (100%) 2/3 (67%)
Central-South 2 0.5 0.057 0.029 18/20 (90%) 7/20 (35%)
America
Europe 2 1.5 0.084 —0.053 27/27 (100%) 15/27 (56%)
North America 2 0.5 0.122 0.009 9/9 (100%) 3/9 (33%)
Oceania 2 1.5 0.139 —0.038 3/4 (75%) 2/4 (50%)
Dataset Africa 2 0.5 0.111 —0.005 2/4 (50%) 4/4 (100%)
Asia 2 0.5 0.105 —0.016 0/3 (0%) 3/3 (100%)
Central-South 2 0.5 0.124 —0.004 10/20 (50%) 19/20 (95%)
America
Europe 1 0.5 0.140 —0.024 8/27 (30%) 27/27 (100%)
North America 2 0.5 0.118 0.007 6/9 (67%) 8/9 (89%)
Oceania 0 0.5 0.211 —0.023 2/4 (50%) 3/4 (75%)

Sensitivity setting varied between the two levels of anal-
ysis. At the vocalization level, when using Sensitivity
values of 0.5 and 1, the Fl-score declined almost linearly
as the minimum Confidence score thresholds increased.
However, with a Sensitivity of 1.5, the Fl-score
increased until it reached its maximum around a Confi-
dence score threshold of 0.3. Interestingly, the Fl-score
curve with a Sensitivity of 1.5 showed better perfor-
mance than the Fl-score curves obtained with the other
two Sensitivity settings between confidence thresholds
of 0.15 and 0.6, while also showing poorer performance
at both very low (<0.15) and very high (>0.75) confi-
dence thresholds.

© 2025 British Ornithologists’ Union.

The highest Fl-scores at the vocalization level were
obtained with an Overlap of 2, a Sensitivity of 1.5 and a
Confidence score threshold around 0.3. At the dataset level,
the highest Fl-scores were consistently achieved with a
Confidence score threshold of around 0.5 across all settings.
The best overall BirdNET performance was achieved with a
Sensitivity of 0.5, followed by 1.0, while a Sensitivity of 1.5
yielded the lowest performance. Under all settings, the
highest and nearly identical Fl-scores were obtained with
Confidence score thresholds around 0.5. The largest differ-
ences in Fl-scores appeared between Sensitivity values at
the lowest and highest minimum Confidence score thresh-
olds, particularly at the higher end.
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Figure 2. BirdNET-Analyser F1-score curves for nine combinations of settings. The three panels on the left (a, ¢ and e) present
results at the vocalization level, while the three panels on the right (b, d and f) show results at the dataset level. The panels are orga-
nized by Overlap settings: the top panels (a, b) correspond to Overlap =0, the middle panels (c, d) correspond to Overlap =1, and
the bottom panels (e, f) correspond to Overlap = 2. Within each panel, the three different Sensitivity values (0.5, 1 and 1.5) are repre-

sented by three distinct colours.

DISCUSSION

BirdNET has become a widely adopted tool for auto-
mated bird sound recognition, yet the majority of past
studies have relied heavily on its default settings, with
minimal parameter adjustments — reviewed by Pérez-
Granados (2023); see also Funosas et al. (2024). Here,
we demonstrated that parameter tuning can substantially
improve performance, with optimal settings varying
according to the monitoring goal — whether focused on
identifying individual vocalizations or detecting species
presence in acoustic datasets. The large variability
observed in BirdNET outputs across different parameter

configurations highlights the need for standardized
parameter guidelines. Such standards would improve
cross-study comparisons, ensure temporal and spatial
reproducibility, and facilitate the integration of acoustic
data into broader biodiversity monitoring platforms.

Our findings provide strong evidence that increasing
the Overlap parameter from its default value of 0 to 2
consistently improves BirdNET performance at the
vocalization level, and moderate evidence that it
improves performance at the dataset level as well. The
improvement probably reflects increased temporal cap-
ture: greater overlap increases the chance that most of a
bird vocalization falls within a single prediction segment,

© 2025 British Ornithologists’ Union.
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and longer within-segment durations are associated with
higher recall (Funosas et al. 2024). Although the benefits
were most evident at the vocalization level, higher
Overlap also led to performance gains at the dataset
level, albeit to a lesser extent. Importantly, this improve-
ment in recall appears not to come at a general cost of
reduced precision, as shown by consistently higher PR
and ROC AUC scores at both levels when using an
Overlap of 2 (Table 1). Although higher Overlap values
increase processing times, this limitation can be offset by
using computing systems and server-based analyses.
With our dataset, and in comparison with an Overlap of
0 (default setting), using an Overlap of 1 increased exe-
cution time by 25%, while an Overlap of 2 nearly dou-
bled it (+96%). Overall, given the clear advantages in
output quality using higher degrees of Overlap, Bird-
NET capabilities may be limited by the conservative
default setting of zero Overlap.

Notably, BirdNET performance — at both the vocali-
zation and dataset levels — varied more across Sensitivity
values than across Overlap values, particularly at the
vocalization level, where the most effective setting var-
ied greatly between regions. As expected, assigning a
high Sensitivity value in BirdNET increased the number
of predictions, especially those with lower confidence
scores (Fig. S3). However, it remains unclear why, in
half of the regions, the best performance at the vocaliza-
tion level was obtained with a value of 0.5, whereas in
the other half it was achieved with a value of 1.5. Fur-
ther research should aim to evaluate whether such dif-
ferences among regions might be related to different
bird diversity, bird song parameters, local vegetation
structure or environmental noise.

Our results suggest that high Sensitivity values may
not be optimal for maximizing PR AUC scores at the
dataset level. This is because they amplify the asymme-
try in how precision and recall respond to the Confi-
dence score threshold: at low thresholds, precision drops
sharply while recall increases more gradually; at high
thresholds, recall drops sharply while precision increases
more gradually. As PR AUC weights precision and recall
equally, this imbalance reduces overall performance.
Low Sensitivity values moderate these effects, producing
a more balanced precision-recall trade-off across the
confidence threshold range. As a result, Fl-scores are
consistently higher for low Sensitivity values when using
either low or high confidence thresholds. In the
mid-range of confidence thresholds (0.35-0.6), where
the asymmetry is less pronounced, Fl-scores are rela-
tively unaffected by the Sensitivity setting. However,
because higher Sensitivity values strengthen the positive
correlation between Confidence scores and precision and
the negative correlation between Confidence scores and
recall (Fig. S4), they enable targeted optimization: com-
bining high Sensitivity with a high confidence threshold
maximizes precision, while pairing with a low

© 2025 British Ornithologists’ Union.

confidence threshold heavily boosts recall. Therefore,
despite low Sensitivity supporting balanced metrics like
PR AUC and Fl-scores, high Sensitivity values coupled
with extreme confidence thresholds appear to be the
most appropriate choice for users who strongly prioritize
either precision or recall.

Our analyses also reveal how BirdNET performance
varies depending on the minimum Confidence score
threshold used. At the vocalization level, the best per-
formance (i.e. the highest Fl-score) was achieved at low
confidence thresholds — around 0.1 for Sensitivity values
of 0.5 and 1.0, and around 0.3 for a Sensitivity of 1.5.
In contrast, at the dataset level, optimal performance
was consistently achieved with minimum confidence
thresholds around 0.5, regardless of the Sensitivity set-
ting. This elevated performance at the dataset level
probably stems from the greater number of opportuni-
ties for correctly predicting a species across the dataset
duration (i.e. only a single correct prediction is required
for the species to be classified as a true positive), such
that raising the minimum confidence threshold at the
dataset level — up to a certain point — improves precision
more than it decreases recall.

The results of our study must be interpreted in light
of the following four primary limitations: (1) the limited
amount of data available for certain regions (Fig. 1), (2)
the different recording equipment wused (Pérez-
Granados 2025, see recorder type of each site in
Table S1), (3) the assumption that the expert human
annotations — used as the benchmark to compare Bird-
NET against — are always correct (see Campbell & Fran-
cis 2011) and (4) the classification of a species as
correctly identified when one prediction was correct,
regardless of the number of incorrect predictions for that
species within the dataset. Although our datasets were
annotated by local experts following a strict protocol
(Pérez-Granados et al. 2025), differences in the annota-
tion effort among recording locations are still possible,
potentially biasing results. Further research should aim
to develop reference annotation catalogues in which
acoustic samples are annotated in agreement by at least
two expert observers — to reduce biases — and, whenever
possible, to collect a similar number of samples at each
site to avoid positive biases toward recording locations
or regions where longer acoustic samples are used. Fur-
thermore, we decided to give equal importance to recall
and precision to evaluate BirdNET performance; how-
ever, future research could explore the impact of vari-
able settings on BirdNET output depending on whether
higher recall or precision is prioritized.

Our results provide practical guidance for future
studies that employ BirdNET for the automated identifi-
cation of bird vocalizations and the detection of species
presence in audio recordings. The broad spatial scope of
our study, combined with consistent performance trends
across different setting values, suggests that our findings,
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particularly the performance benefits of high Overlap
values, can serve as a reliable starting point for BirdNET
usage in other regions. Nonetheless, it would be advis-
able to assess the impact of BirdNET settings before
applying them in regions that were underrepresented in
our acoustic dataset, such as Africa, Asia and Oceania. It
is also worth noting that BirdNET performance
improves with the development of updated versions
(Funosas et al. 2024). Therefore, the annotated acoustic
dataset used in this study, which is freely available, may
serve as a valuable benchmark for evaluating the com-
parative performance of future versions of BirdNET, as
well as for comparative studies between BirdNET and
other machine learning tools (e.g. Morfi et al. 2019,
Ghani et al. 2023).

We are grateful to the CTFC IT team for their help and sup-
port during the analyses, especially Daniel Macedo and Albert
Sanahuja for their assistance.
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SUPPORTING INFORMATION

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Figure S1. Definitions of true positives, false posi-
tives, true negatives and false negatives are used to eval-
uate BirdNET performance at the (A) vocalization and
(B) dataset levels.

Figure S2. Mean precision, along with the standard
error bar, of BirdNET vocalizations predicted for differ-
ent ranges of confidence scores and each of the Sensitiv-
ity values tested, having used an Overlap of 2s.

Figure S3. Average number of BirdNET predictions
made per minute for different ranges of confidence
scores and for each of the Sensitivity values tested, hav-
ing used an Overlap of 2s.

Figure S4. BirdNET-analyser Precision-Recall (PR)
and receiver operating characteristic (ROC) curves at
the dataset level for Overlap = 0 and different Sensitivity
values. The three panels on the left (a, c, e) display PR
curves, while the three panels on the right (b, d, f) dis-
play ROC curves. The panels are organized by DS set-
tings, the top panels (a, b) corresponding to DS=0.5,
the middle panels (¢, d) to DS=1.0, and the bottom
panels (e, f) to DS =1.5. Original area under the curve
(AUCQC) scores (orig_AUC) and AUC scores divided by
the recall range in the PR curve and by the false-positive
rate range in the ROC curve (adj_AUC) are shown on
top of each curve.

Table S1. Description of the 67 recording locations
where the recordings were done, including the recording
site ID, study area name, region, main biome, latitude,
longitude (geographical coordinates in decimal degrees),
recorder time (including microphone brand for hand-
held recorders) and number of recording minutes
included in the dataset.

Table S2. Biome-specific optimal Overlap and Sensi-
tivity settings for BirdNET-Analyser to maximize area
under the curve (AUC) scores for the Precision—Recall
(PR) curve. Nine combinations of settings — three levels
of Overlap between consecutive predictions (0, 1 and
2s) and three Sensitivity values (0.5, 1 and 1.5) — were
evaluated using a minimum Confidence score threshold
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of 0.1. To measure model improvement, we report the
variation (A) in AUC scores for both PR and receiver
operating characteristic (ROC) curves between the best-
performing settings for PR AUC optimization and the
default settings (Overlap =0, Sensitivity =1). Results
are presented separately for vocalization-level and
dataset-level analyses. The number and percentage of
datasets converging on the same optimal settings are
presented for each biome.

Table S3. Dataset-specific optimal Overlap and Sen-
sitivity settings for BirdNET-Analyser to maximize area
under the curve (AUC) scores for the Precision—Recall
(PR) curve. Nine combinations of settings — three levels

© 2025 British Ornithologists’ Union.

of Overlap between consecutive predictions (0, 1 and
2s) and three Sensitivity values (0.5, 1 and 1.5) — were
evaluated using a minimum Confidence score threshold
of 0.1. To measure model improvement, we report the
variation (A) in AUC scores for both PR and receiver
operating characteristic (ROC) curves between the best-
performing settings for PR AUC optimization and the
default settings (Overlap =0, Sensitivity =1). Results
are presented separately for vocalization-level and
dataset-level analyses.
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